
Qt	Reference	Documentation	

Home	
Modules
QtGui
QWidget	

Contents
Public	Types
Properties
Public	Functions
Public	Slots
Signals
Static	Public	Members
Protected	Functions
Protected	Slots
Related	Non-Members
Macros
Detailed	Description
Top-Level	and	Child	Widgets
Composite	Widgets
Custom	Widgets	and	Painting
Size	Hints	and	Size	Policies
Events
Groups	of	Functions	and	Properties
Widget	Style	Sheets
Transparency	and	Double	Buffering
Creating	Translucent	Windows
Native	Widgets	vs	Alien	Widgets
Softkeys

QWidget	Class	Reference
The	QWidget	class	is	the	base	class	of	all	user	interface	objects.	More...

	#include	<QWidget>

Inherits:	QObject	and	QPaintDevice.

Inherited	by:	Phonon::EffectWidget,	Phonon::SeekSlider,	Phonon::VideoPlayer,	Phonon::VideoWidget,	Phonon::VolumeSlider,	Q3ComboBox,	Q3DataBrowser,	Q3DataView,	Q3DateTimeEdit,	Q3DateTimeEditBase,	Q3DockArea,	Q3Header,	Q3MainWindow,	QAbstractButton,	QAbstractSlider,	QAbstractSpinBox,	QAxWidget,	QCalendarWidget,	QComboBox,	QDesignerActionEditorInterface,	QDesignerFormWindowInterface,	QDesignerObjectInspectorInterface,	QDesignerPropertyEditorInterface,	QDesignerWidgetBoxInterface,	QDesktopWidget,	QDialog,	QDialogButtonBox,	QDockWidget,	QFocusFrame,	QFrame,	QGLWidget,	QGroupBox,	QHelpSearchQueryWidget,	QHelpSearchResultWidget,	QLineEdit,	QMacCocoaViewContainer,	QMacNativeWidget,	QMainWindow,	QMdiSubWindow,	QMenu,	QMenuBar,	QPrintPreviewWidget,	QProgressBar,	QRubberBand,	QSizeGrip,	QSplashScreen,	QSplitterHandle,	QStatusBar,	QSvgWidget,	QTabBar,	QTabWidget,	QToolBar,	QWebInspector,	QWebView,	QWizardPage,	QWorkspace,	QWSEmbedWidget,	QX11EmbedContainer,	and	QX11EmbedWidget.

List	of	all	members,	including	inherited	members
Obsolete	members
Qt	3	support	members	

Public	Types
enum	 RenderFlag	{	DrawWindowBackground,	DrawChildren,	IgnoreMask	}

flags	 RenderFlags

Properties
acceptDrops	:	bool
accessibleDescription	:	QString
accessibleName	:	QString
autoFillBackground	:	bool
baseSize	:	QSize
childrenRect	:	const	QRect
childrenRegion	:	const	QRegion
contextMenuPolicy	:	Qt::ContextMenuPolicy
cursor	:	QCursor
enabled	:	bool
focus	:	const	bool
focusPolicy	:	Qt::FocusPolicy
font	:	QFont
frameGeometry	:	const	QRect
frameSize	:	const	QSize
fullScreen	:	const	bool
geometry	:	QRect
height	:	const	int
inputMethodHints	:	Qt::InputMethodHints
isActiveWindow	:	const	bool
layoutDirection	:	Qt::LayoutDirection
locale	:	QLocale
maximized	:	const	bool
maximumHeight	:	int
maximumSize	:	QSize
maximumWidth	:	int
minimized	:	const	bool
minimumHeight	:	int
minimumSize	:	QSize

minimumSizeHint	:	const	QSize
minimumWidth	:	int
modal	:	const	bool
mouseTracking	:	bool
normalGeometry	:	const	QRect
palette	:	QPalette
pos	:	QPoint
rect	:	const	QRect
size	:	QSize
sizeHint	:	const	QSize
sizeIncrement	:	QSize
sizePolicy	:	QSizePolicy
statusTip	:	QString
styleSheet	:	QString
toolTip	:	QString
updatesEnabled	:	bool
visible	:	bool
whatsThis	:	QString
width	:	const	int
windowFilePath	:	QString
windowFlags	:	Qt::WindowFlags
windowIcon	:	QIcon
windowIconText	:	QString
windowModality	:	Qt::WindowModality
windowModified	:	bool
windowOpacity	:	double
windowTitle	:	QString
x	:	const	int
y	:	const	int

1	property	inherited	from	QObject	

Public	Functions
QWidget	(	QWidget	*	parent	=	0,	Qt::WindowFlags	f	=	0	)

~QWidget	()

bool	 acceptDrops	()	const

QString	 accessibleDescription	()	const

QString	 accessibleName	()	const

QList<QAction	*>	 actions	()	const

void	 activateWindow	()

void	 addAction	(	QAction	*	action	)

void	 addActions	(	QList<QAction	*>	actions	)

void	 adjustSize	()

bool	 autoFillBackground	()	const

QPalette::ColorRole	 backgroundRole	()	const

QSize	 baseSize	()	const

QWidget	*	 childAt	(	int	x,	int	y	)	const

QWidget	*	 childAt	(	const	QPoint	&	p	)	const

QRect	 childrenRect	()	const

QRegion	 childrenRegion	()	const

void	 clearFocus	()

void	 clearMask	()

QMargins	 contentsMargins	()	const

QRect	 contentsRect	()	const

Qt::ContextMenuPolicy	 contextMenuPolicy	()	const

QCursor	 cursor	()	const

WId	 effectiveWinId	()	const

void	 ensurePolished	()	const

Qt::FocusPolicy	 focusPolicy	()	const

QWidget	*	 focusProxy	()	const

QWidget	*	 focusWidget	()	const

const	QFont	&	 font	()	const

QFontInfo	 fontInfo	()	const

QFontMetrics	 fontMetrics	()	const

QPalette::ColorRole	 foregroundRole	()	const

QRect	 frameGeometry	()	const

QSize	 frameSize	()	const

const	QRect	&	 geometry	()	const

void	 getContentsMargins	(	int	*	left,	int	*	top,	int	*	right,	int	*	bottom	)	const

void	 grabGesture	(	Qt::GestureType	gesture,	Qt::GestureFlags	flags	=	Qt::GestureFlags()	)

void	 grabKeyboard	()

void	 grabMouse	()

void	 grabMouse	(	const	QCursor	&	cursor	)

int	 grabShortcut	(	const	QKeySequence	&	key,	Qt::ShortcutContext	context	=	Qt::WindowShortcut	)

QGraphicsEffect	*	 graphicsEffect	()	const

QGraphicsProxyWidget	*	 graphicsProxyWidget	()	const

bool	 hasEditFocus	()	const

bool	 hasFocus	()	const

bool	 hasMouseTracking	()	const

int	 height	()	const

virtual	int	 heightForWidth	(	int	w	)	const

QInputContext	*	 inputContext	()

Qt::InputMethodHints	 inputMethodHints	()	const

virtual	QVariant	 inputMethodQuery	(	Qt::InputMethodQuery	query	)	const

void	 insertAction	(	QAction	*	before,	QAction	*	action	)

void	 insertActions	(	QAction	*	before,	QList<QAction	*>	actions	)

bool	 isActiveWindow	()	const

bool	 isAncestorOf	(	const	QWidget	*	child	)	const

bool	 isEnabled	()	const

bool	 isEnabledTo	(	QWidget	*	ancestor	)	const

bool	 isFullScreen	()	const

bool	 isHidden	()	const

bool	 isMaximized	()	const

bool	 isMinimized	()	const

bool	 isModal	()	const

bool	 isVisible	()	const

bool	 isVisibleTo	(	QWidget	*	ancestor	)	const

bool	 isWindow	()	const

bool	 isWindowModified	()	const

QLayout	*	 layout	()	const

Qt::LayoutDirection	 layoutDirection	()	const

QLocale	 locale	()	const

Qt::HANDLE	 macCGHandle	()	const

Qt::HANDLE	 macQDHandle	()	const

QPoint	 mapFrom	(	QWidget	*	parent,	const	QPoint	&	pos	)	const

QPoint	 mapFromGlobal	(	const	QPoint	&	pos	)	const

QPoint	 mapFromParent	(	const	QPoint	&	pos	)	const

QPoint	 mapTo	(	QWidget	*	parent,	const	QPoint	&	pos	)	const

QPoint	 mapToGlobal	(	const	QPoint	&	pos	)	const

QPoint	 mapToParent	(	const	QPoint	&	pos	)	const

QRegion	 mask	()	const

int	 maximumHeight	()	const

QSize	 maximumSize	()	const

int	 maximumWidth	()	const

int	 minimumHeight	()	const

QSize	 minimumSize	()	const

virtual	QSize	 minimumSizeHint	()	const

int	 minimumWidth	()	const

void	 move	(	const	QPoint	&	)

void	 move	(	int	x,	int	y	)

QWidget	*	 nativeParentWidget	()	const

QWidget	*	 nextInFocusChain	()	const

QRect	 normalGeometry	()	const

void	 overrideWindowFlags	(	Qt::WindowFlags	flags	)

const	QPalette	&	 palette	()	const

QWidget	*	 parentWidget	()	const

QPlatformWindow	*	 platformWindow	()	const	(preliminary)

QPlatformWindowFormat	 platformWindowFormat	()	const

QPoint	 pos	()	const

QWidget	*	 previousInFocusChain	()	const

QRect	 rect	()	const

void	 releaseKeyboard	()

void	 releaseMouse	()

void	 releaseShortcut	(	int	id	)

void	 removeAction	(	QAction	*	action	)

void	 render	(	QPaintDevice	*	target,	const	QPoint	&	targetOffset	=	QPoint(),	const	QRegion	&	sourceRegion	=	QRegion(),	RenderFlags	renderFlags	=	RenderFlags(	DrawWindowBackground	|	DrawChildren	)	)

void	 render	(	QPainter	*	painter,	const	QPoint	&	targetOffset	=	QPoint(),	const	QRegion	&	sourceRegion	=	QRegion(),	RenderFlags	renderFlags	=	RenderFlags(	DrawWindowBackground	|	DrawChildren	)	)

void	 repaint	(	int	x,	int	y,	int	w,	int	h	)

void	 repaint	(	const	QRect	&	rect	)

void	 repaint	(	const	QRegion	&	rgn	)

void	 resize	(	const	QSize	&	)

void	 resize	(	int	w,	int	h	)

bool	 restoreGeometry	(	const	QByteArray	&	geometry	)

QByteArray	 saveGeometry	()	const

void	 scroll	(	int	dx,	int	dy	)

void	 scroll	(	int	dx,	int	dy,	const	QRect	&	r	)

void	 setAcceptDrops	(	bool	on	)

void	 setAccessibleDescription	(	const	QString	&	description	)

void	 setAccessibleName	(	const	QString	&	name	)

void	 setAttribute	(	Qt::WidgetAttribute	attribute,	bool	on	=	true	)

void	 setAutoFillBackground	(	bool	enabled	)

void	 setBackgroundRole	(	QPalette::ColorRole	role	)

void	 setBaseSize	(	const	QSize	&	)

void	 setBaseSize	(	int	basew,	int	baseh	)

void	 setContentsMargins	(	int	left,	int	top,	int	right,	int	bottom	)

void	 setContentsMargins	(	const	QMargins	&	margins	)

void	 setContextMenuPolicy	(	Qt::ContextMenuPolicy	policy	)

void	 setCursor	(	const	QCursor	&	)

void	 setEditFocus	(	bool	enable	)

void	 setFixedHeight	(	int	h	)

void	 setFixedSize	(	const	QSize	&	s	)

void	 setFixedSize	(	int	w,	int	h	)

void	 setFixedWidth	(	int	w	)

void	 setFocus	(	Qt::FocusReason	reason	)

void	 setFocusPolicy	(	Qt::FocusPolicy	policy	)

void	 setFocusProxy	(	QWidget	*	w	)

void	 setFont	(	const	QFont	&	)

void	 setForegroundRole	(	QPalette::ColorRole	role	)

void	 setGeometry	(	const	QRect	&	)

void	 setGeometry	(	int	x,	int	y,	int	w,	int	h	)

void	 setGraphicsEffect	(	QGraphicsEffect	*	effect	)

void	 setInputContext	(	QInputContext	*	context	)

void	 setInputMethodHints	(	Qt::InputMethodHints	hints	)

void	 setLayout	(	QLayout	*	layout	)

void	 setLayoutDirection	(	Qt::LayoutDirection	direction	)

void	 setLocale	(	const	QLocale	&	locale	)

void	 setMask	(	const	QBitmap	&	bitmap	)

void	 setMask	(	const	QRegion	&	region	)

void	 setMaximumHeight	(	int	maxh	)

void	 setMaximumSize	(	const	QSize	&	)

void	 setMaximumSize	(	int	maxw,	int	maxh	)

void	 setMaximumWidth	(	int	maxw	)

void	 setMinimumHeight	(	int	minh	)

void	 setMinimumSize	(	const	QSize	&	)

void	 setMinimumSize	(	int	minw,	int	minh	)

void	 setMinimumWidth	(	int	minw	)

void	 setMouseTracking	(	bool	enable	)

void	 setPalette	(	const	QPalette	&	)

void	 setParent	(	QWidget	*	parent	)

void	 setParent	(	QWidget	*	parent,	Qt::WindowFlags	f	)

void	 setPlatformWindow	(	QPlatformWindow	*	window	)	(preliminary)

void	 setPlatformWindowFormat	(	const	QPlatformWindowFormat	&	format	)

void	 setShortcutAutoRepeat	(	int	id,	bool	enable	=	true	)

void	 setShortcutEnabled	(	int	id,	bool	enable	=	true	)

void	 setSizeIncrement	(	const	QSize	&	)

void	 setSizeIncrement	(	int	w,	int	h	)

void	 setSizePolicy	(	QSizePolicy	)

void	 setSizePolicy	(	QSizePolicy::Policy	horizontal,	QSizePolicy::Policy	vertical	)

void	 setStatusTip	(	const	QString	&	)

void	 setStyle	(	QStyle	*	style	)

void	 setToolTip	(	const	QString	&	)

void	 setUpdatesEnabled	(	bool	enable	)

void	 setWhatsThis	(	const	QString	&	)

void	 setWindowFilePath	(	const	QString	&	filePath	)

void	 setWindowFlags	(	Qt::WindowFlags	type	)

1

index.html
index.html
modules.html
qtgui.html
#public-types
#properties
#public-functions
#public-slots
#signals
#static-public-members
#protected-functions
#protected-slots
#related-non-members
#macros
#details
#top-level-and-child-widgets
#composite-widgets
#custom-widgets-and-painting
#size-hints-and-size-policies
#events
#groups-of-functions-and-properties
#widget-style-sheets
#transparency-and-double-buffering
#creating-translucent-windows
#native-widgets-vs-alien-widgets
#softkeys
#details
qobject.html
qpaintdevice.html
phonon-effectwidget.html
phonon-seekslider.html
phonon-videoplayer.html
phonon-videowidget.html
phonon-volumeslider.html
q3combobox.html
q3databrowser.html
q3dataview.html
q3datetimeedit.html
q3datetimeeditbase.html
q3dockarea.html
q3header.html
q3mainwindow.html
qabstractbutton.html
qabstractslider.html
qabstractspinbox.html
qaxwidget.html
qcalendarwidget.html
qcombobox.html
qdesigneractioneditorinterface.html
qdesignerformwindowinterface.html
qdesignerobjectinspectorinterface.html
qdesignerpropertyeditorinterface.html
qdesignerwidgetboxinterface.html
qdesktopwidget.html
qdialog.html
qdialogbuttonbox.html
qdockwidget.html
qfocusframe.html
qframe.html
qglwidget.html
qgroupbox.html
qhelpsearchquerywidget.html
qhelpsearchresultwidget.html
qlineedit.html
qmaccocoaviewcontainer.html
qmacnativewidget.html
qmainwindow.html
qmdisubwindow.html
qmenu.html
qmenubar.html
qprintpreviewwidget.html
qprogressbar.html
qrubberband.html
qsizegrip.html
qsplashscreen.html
qsplitterhandle.html
qstatusbar.html
qsvgwidget.html
qtabbar.html
qtabwidget.html
qtoolbar.html
qwebinspector.html
qwebview.html
qwizardpage.html
qworkspace.html
qwsembedwidget.html
qx11embedcontainer.html
qx11embedwidget.html
qwidget-members.html
qwidget-obsolete.html
qwidget-qt3.html
qwidget.html#RenderFlag-enum
qwidget.html#RenderFlag-enum
qwidget.html#acceptDrops-prop
qwidget.html#accessibleDescription-prop
qwidget.html#accessibleName-prop
qwidget.html#autoFillBackground-prop
qwidget.html#baseSize-prop
qwidget.html#childrenRect-prop
qwidget.html#childrenRegion-prop
qwidget.html#contextMenuPolicy-prop
qwidget.html#cursor-prop
qwidget.html#enabled-prop
qwidget.html#focus-prop
qwidget.html#focusPolicy-prop
qwidget.html#font-prop
qwidget.html#frameGeometry-prop
qwidget.html#frameSize-prop
qwidget.html#fullScreen-prop
qwidget.html#geometry-prop
qwidget.html#height-prop
qwidget.html#inputMethodHints-prop
qwidget.html#isActiveWindow-prop
qwidget.html#layoutDirection-prop
qwidget.html#locale-prop
qwidget.html#maximized-prop
qwidget.html#maximumHeight-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumWidth-prop
qwidget.html#minimized-prop
qwidget.html#minimumHeight-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumSizeHint-prop
qwidget.html#minimumWidth-prop
qwidget.html#modal-prop
qwidget.html#mouseTracking-prop
qwidget.html#normalGeometry-prop
qwidget.html#palette-prop
qwidget.html#pos-prop
qwidget.html#rect-prop
qwidget.html#size-prop
qwidget.html#sizeHint-prop
qwidget.html#sizeIncrement-prop
qwidget.html#sizePolicy-prop
qwidget.html#statusTip-prop
qwidget.html#styleSheet-prop
qwidget.html#toolTip-prop
qwidget.html#updatesEnabled-prop
qwidget.html#visible-prop
qwidget.html#whatsThis-prop
qwidget.html#width-prop
qwidget.html#windowFilePath-prop
qwidget.html#windowFlags-prop
qwidget.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#windowModality-prop
qwidget.html#windowModified-prop
qwidget.html#windowOpacity-prop
qwidget.html#windowTitle-prop
qwidget.html#x-prop
qwidget.html#y-prop
qobject.html#properties
qwidget.html#QWidget
qwidget.html#dtor.QWidget
qwidget.html#acceptDrops-prop
qwidget.html#accessibleDescription-prop
qwidget.html#accessibleName-prop
qwidget.html#actions
qwidget.html#activateWindow
qwidget.html#addAction
qwidget.html#addActions
qwidget.html#adjustSize
qwidget.html#autoFillBackground-prop
qwidget.html#backgroundRole
qwidget.html#baseSize-prop
qwidget.html#childAt
qwidget.html#childAt-4
qwidget.html#childrenRect-prop
qwidget.html#childrenRegion-prop
qwidget.html#clearFocus
qwidget.html#clearMask
qwidget.html#contentsMargins
qwidget.html#contentsRect
qwidget.html#contextMenuPolicy-prop
qwidget.html#cursor-prop
qwidget.html#effectiveWinId
qwidget.html#ensurePolished
qwidget.html#focusPolicy-prop
qwidget.html#focusProxy
qwidget.html#focusWidget
qwidget.html#font-prop
qwidget.html#fontInfo
qwidget.html#fontMetrics
qwidget.html#foregroundRole
qwidget.html#frameGeometry-prop
qwidget.html#frameSize-prop
qwidget.html#geometry-prop
qwidget.html#getContentsMargins
qwidget.html#grabGesture
qwidget.html#grabKeyboard
qwidget.html#grabMouse
qwidget.html#grabMouse-2
qwidget.html#grabShortcut
qwidget.html#graphicsEffect
qwidget.html#graphicsProxyWidget
qwidget.html#hasEditFocus
qwidget.html#focus-prop
qwidget.html#mouseTracking-prop
qwidget.html#height-prop
qwidget.html#heightForWidth
qwidget.html#inputContext
qwidget.html#inputMethodHints-prop
qwidget.html#inputMethodQuery
qwidget.html#insertAction
qwidget.html#insertActions
qwidget.html#isActiveWindow-prop
qwidget.html#isAncestorOf
qwidget.html#enabled-prop
qwidget.html#isEnabledTo
qwidget.html#fullScreen-prop
qwidget.html#isHidden
qwidget.html#maximized-prop
qwidget.html#minimized-prop
qwidget.html#modal-prop
qwidget.html#visible-prop
qwidget.html#isVisibleTo
qwidget.html#isWindow
qwidget.html#windowModified-prop
qwidget.html#layout
qwidget.html#layoutDirection-prop
qwidget.html#locale-prop
qwidget.html#macCGHandle
qwidget.html#macQDHandle
qwidget.html#mapFrom
qwidget.html#mapFromGlobal
qwidget.html#mapFromParent
qwidget.html#mapTo
qwidget.html#mapToGlobal
qwidget.html#mapToParent
qwidget.html#mask
qwidget.html#maximumHeight-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumWidth-prop
qwidget.html#minimumHeight-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumSizeHint-prop
qwidget.html#minimumWidth-prop
qwidget.html#pos-prop
qwidget.html#pos-prop
qwidget.html#nativeParentWidget
qwidget.html#nextInFocusChain
qwidget.html#normalGeometry-prop
qwidget.html#overrideWindowFlags
qwidget.html#palette-prop
qwidget.html#parentWidget
qwidget.html#platformWindow
qwidget.html#platformWindowFormat
qwidget.html#pos-prop
qwidget.html#previousInFocusChain
qwidget.html#rect-prop
qwidget.html#releaseKeyboard
qwidget.html#releaseMouse
qwidget.html#releaseShortcut
qwidget.html#removeAction
qwidget.html#render
qwidget.html#render-2
qwidget.html#repaint-6
qwidget.html#repaint-7
qwidget.html#repaint-8
qwidget.html#size-prop
qwidget.html#size-prop
qwidget.html#restoreGeometry
qwidget.html#saveGeometry
qwidget.html#scroll
qwidget.html#scroll-2
qwidget.html#acceptDrops-prop
qwidget.html#accessibleDescription-prop
qwidget.html#accessibleName-prop
qwidget.html#setAttribute
qwidget.html#autoFillBackground-prop
qwidget.html#setBackgroundRole
qwidget.html#baseSize-prop
qwidget.html#baseSize-prop
qwidget.html#setContentsMargins
qwidget.html#setContentsMargins-2
qwidget.html#contextMenuPolicy-prop
qwidget.html#cursor-prop
qwidget.html#setEditFocus
qwidget.html#setFixedHeight
qwidget.html#setFixedSize
qwidget.html#setFixedSize-2
qwidget.html#setFixedWidth
qwidget.html#setFocus
qwidget.html#focusPolicy-prop
qwidget.html#setFocusProxy
qwidget.html#font-prop
qwidget.html#setForegroundRole
qwidget.html#geometry-prop
qwidget.html#geometry-prop
qwidget.html#setGraphicsEffect
qwidget.html#setInputContext
qwidget.html#inputMethodHints-prop
qwidget.html#setLayout
qwidget.html#layoutDirection-prop
qwidget.html#locale-prop
qwidget.html#setMask
qwidget.html#setMask-2
qwidget.html#maximumHeight-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumWidth-prop
qwidget.html#minimumHeight-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumWidth-prop
qwidget.html#mouseTracking-prop
qwidget.html#palette-prop
qwidget.html#setParent
qwidget.html#setParent-2
qwidget.html#setPlatformWindow
qwidget.html#setPlatformWindowFormat
qwidget.html#setShortcutAutoRepeat
qwidget.html#setShortcutEnabled
qwidget.html#sizeIncrement-prop
qwidget.html#sizeIncrement-prop
qwidget.html#sizePolicy-prop
qwidget.html#sizePolicy-prop
qwidget.html#statusTip-prop
qwidget.html#setStyle
qwidget.html#toolTip-prop
qwidget.html#updatesEnabled-prop
qwidget.html#whatsThis-prop
qwidget.html#windowFilePath-prop
qwidget.html#windowFlags-prop


void	 setWindowIcon	(	const	QIcon	&	icon	)

void	 setWindowIconText	(	const	QString	&	)

void	 setWindowModality	(	Qt::WindowModality	windowModality	)

void	 setWindowOpacity	(	qreal	level	)

void	 setWindowRole	(	const	QString	&	role	)

void	 setWindowState	(	Qt::WindowStates	windowState	)

void	 setWindowSurface	(	QWindowSurface	*	surface	)	(preliminary)

void	 setupUi	(	QWidget	*	widget	)

QSize	 size	()	const

virtual	QSize	 sizeHint	()	const

QSize	 sizeIncrement	()	const

QSizePolicy	 sizePolicy	()	const

void	 stackUnder	(	QWidget	*	w	)

QString	 statusTip	()	const

QStyle	*	 style	()	const

QString	 styleSheet	()	const

bool	 testAttribute	(	Qt::WidgetAttribute	attribute	)	const

QString	 toolTip	()	const

bool	 underMouse	()	const

void	 ungrabGesture	(	Qt::GestureType	gesture	)

void	 unsetCursor	()

void	 unsetLayoutDirection	()

void	 unsetLocale	()

void	 update	(	int	x,	int	y,	int	w,	int	h	)

void	 update	(	const	QRect	&	rect	)

void	 update	(	const	QRegion	&	rgn	)

void	 updateGeometry	()

bool	 updatesEnabled	()	const

QRegion	 visibleRegion	()	const

QString	 whatsThis	()	const

int	 width	()	const

WId	 winId	()	const

QWidget	*	 window	()	const

QString	 windowFilePath	()	const

Qt::WindowFlags	 windowFlags	()	const

QIcon	 windowIcon	()	const

QString	 windowIconText	()	const

Qt::WindowModality	 windowModality	()	const

qreal	 windowOpacity	()	const

QString	 windowRole	()	const

Qt::WindowStates	 windowState	()	const

QWindowSurface	*	 windowSurface	()	const	(preliminary)

QString	 windowTitle	()	const

Qt::WindowType	 windowType	()	const

int	 x	()	const

const	QX11Info	&	 x11Info	()	const

Qt::HANDLE	 x11PictureHandle	()	const

int	 y	()	const

Reimplemented	Public	Functions
virtual	HDC	 getDC	()	const

virtual	QPaintEngine	*	 paintEngine	()	const

virtual	void	 releaseDC	(	HDC	hdc	)	const

29	public	functions	inherited	from	QObject
13	public	functions	inherited	from	QPaintDevice	

Public	Slots
bool	 close	()

void	 hide	()

void	 lower	()

void	 raise	()

void	 repaint	()

void	 setDisabled	(	bool	disable	)

void	 setEnabled	(	bool	)

void	 setFocus	()

void	 setHidden	(	bool	hidden	)

void	 setStyleSheet	(	const	QString	&	styleSheet	)

virtual	void	 setVisible	(	bool	visible	)

void	 setWindowModified	(	bool	)

void	 setWindowTitle	(	const	QString	&	)

void	 show	()

void	 showFullScreen	()

void	 showMaximized	()

void	 showMinimized	()

void	 showNormal	()

void	 update	()

1	public	slot	inherited	from	QObject	

Signals
void	 customContextMenuRequested	(	const	QPoint	&	pos	)

1	signal	inherited	from	QObject	

Static	Public	Members
QWidget	*	 find	(	WId	id	)

QWidget	*	 keyboardGrabber	()

QWidget	*	 mouseGrabber	()

void	 setTabOrder	(	QWidget	*	first,	QWidget	*	second	)

7	static	public	members	inherited	from	QObject	

Protected	Functions
virtual	void	 actionEvent	(	QActionEvent	*	event	)

virtual	void	 changeEvent	(	QEvent	*	event	)

virtual	void	 closeEvent	(	QCloseEvent	*	event	)

virtual	void	 contextMenuEvent	(	QContextMenuEvent	*	event	)

void	 create	(	WId	window	=	0,	bool	initializeWindow	=	true,	bool	destroyOldWindow	=	true	)

void	 destroy	(	bool	destroyWindow	=	true,	bool	destroySubWindows	=	true	)

virtual	void	 dragEnterEvent	(	QDragEnterEvent	*	event	)

virtual	void	 dragLeaveEvent	(	QDragLeaveEvent	*	event	)

virtual	void	 dragMoveEvent	(	QDragMoveEvent	*	event	)

virtual	void	 dropEvent	(	QDropEvent	*	event	)

virtual	void	 enterEvent	(	QEvent	*	event	)

virtual	void	 focusInEvent	(	QFocusEvent	*	event	)

bool	 focusNextChild	()

virtual	bool	 focusNextPrevChild	(	bool	next	)

virtual	void	 focusOutEvent	(	QFocusEvent	*	event	)

bool	 focusPreviousChild	()

virtual	void	 hideEvent	(	QHideEvent	*	event	)

virtual	void	 inputMethodEvent	(	QInputMethodEvent	*	event	)

virtual	void	 keyPressEvent	(	QKeyEvent	*	event	)

virtual	void	 keyReleaseEvent	(	QKeyEvent	*	event	)

virtual	void	 leaveEvent	(	QEvent	*	event	)

virtual	bool	 macEvent	(	EventHandlerCallRef	caller,	EventRef	event	)

virtual	void	 mouseDoubleClickEvent	(	QMouseEvent	*	event	)

virtual	void	 mouseMoveEvent	(	QMouseEvent	*	event	)

virtual	void	 mousePressEvent	(	QMouseEvent	*	event	)

virtual	void	 mouseReleaseEvent	(	QMouseEvent	*	event	)

virtual	void	 moveEvent	(	QMoveEvent	*	event	)

virtual	void	 paintEvent	(	QPaintEvent	*	event	)

virtual	bool	 qwsEvent	(	QWSEvent	*	event	)

virtual	void	 resizeEvent	(	QResizeEvent	*	event	)

virtual	void	 showEvent	(	QShowEvent	*	event	)

virtual	void	 tabletEvent	(	QTabletEvent	*	event	)

virtual	void	 wheelEvent	(	QWheelEvent	*	event	)

virtual	bool	 winEvent	(	MSG	*	message,	long	*	result	)

virtual	bool	 x11Event	(	XEvent	*	event	)

Reimplemented	Protected	Functions
virtual	bool	 event	(	QEvent	*	event	)

virtual	int	 metric	(	PaintDeviceMetric	m	)	const

8	protected	functions	inherited	from	QObject
1	protected	function	inherited	from	QPaintDevice	

Protected	Slots
void	 updateMicroFocus	()

Related	Non-Members
typedef	 QWidgetList

typedef	 WId

Macros
QWIDGETSIZE_MAX

Detailed	Description
The	QWidget	class	is	the	base	class	of	all	user	interface	objects.

The	widget	is	the	atom	of	the	user	interface:	it	receives	mouse,	keyboard	and	other	events	from	the	window	system,	and	paints	a	representation	of	itself	on	the	screen.	Every	widget	is	rectangular,	and	they	are	sorted	in	a	Z-order.	A	widget	is	clipped	by	its	parent	and	by	the	widgets	in	front	of	it.

A	widget	that	is	not	embedded	in	a	parent	widget	is	called	a	window.	Usually,	windows	have	a	frame	and	a	title	bar,	although	it	is	also	possible	to	create	windows	without	such	decoration	using	suitable	window	flags).	In	Qt,	QMainWindow	and	the	various	subclasses	of	QDialog	are	the	most	common	window	types.

Every	widget's	constructor	accepts	one	or	two	standard	arguments:

1. QWidget	*parent	=	0	is	the	parent	of	the	new	widget.	If	it	is	0	(the	default),	the	new	widget	will	be	a	window.	If	not,	it	will	be	a	child	of	parent,	and	be	constrained	by	parent's	geometry	(unless	you	specify	Qt::Window	as	window	flag).
2. Qt::WindowFlags	f	=	0	(where	available)	sets	the	window	flags;	the	default	is	suitable	for	almost	all	widgets,	but	to	get,	for	example,	a	window	without	a	window	system	frame,	you	must	use	special	flags.

QWidget	has	many	member	functions,	but	some	of	them	have	little	direct	functionality;	for	example,	QWidget	has	a	font	property,	but	never	uses	this	itself.	There	are	many	subclasses	which	provide	real	functionality,	such	as	QLabel,	QPushButton,	QListWidget,	and	QTabWidget.	

2

qwidget.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#windowModality-prop
qwidget.html#windowOpacity-prop
qwidget.html#setWindowRole
qwidget.html#setWindowState
qwidget.html#setWindowSurface
qwidget.html#setupUi
qwidget.html#size-prop
qwidget.html#sizeHint-prop
qwidget.html#sizeIncrement-prop
qwidget.html#sizePolicy-prop
qwidget.html#stackUnder
qwidget.html#statusTip-prop
qwidget.html#style
qwidget.html#styleSheet-prop
qwidget.html#testAttribute
qwidget.html#toolTip-prop
qwidget.html#underMouse
qwidget.html#ungrabGesture
qwidget.html#cursor-prop
qwidget.html#layoutDirection-prop
qwidget.html#locale-prop
qwidget.html#update-2
qwidget.html#update-3
qwidget.html#update-4
qwidget.html#updateGeometry
qwidget.html#updatesEnabled-prop
qwidget.html#visibleRegion
qwidget.html#whatsThis-prop
qwidget.html#width-prop
qwidget.html#winId
qwidget.html#window
qwidget.html#windowFilePath-prop
qwidget.html#windowFlags-prop
qwidget.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#windowModality-prop
qwidget.html#windowOpacity-prop
qwidget.html#windowRole
qwidget.html#windowState
qwidget.html#windowSurface
qwidget.html#windowTitle-prop
qwidget.html#windowType
qwidget.html#x-prop
qwidget.html#x11Info
qwidget.html#x11PictureHandle
qwidget.html#y-prop
qwidget.html#getDC
qwidget.html#paintEngine
qwidget.html#releaseDC
qobject.html#public-functions
qpaintdevice.html#public-functions
qwidget.html#close
qwidget.html#hide
qwidget.html#lower
qwidget.html#raise
qwidget.html#repaint
qwidget.html#setDisabled
qwidget.html#enabled-prop
qwidget.html#setFocus-2
qwidget.html#setHidden
qwidget.html#styleSheet-prop
qwidget.html#visible-prop
qwidget.html#windowModified-prop
qwidget.html#windowTitle-prop
qwidget.html#show
qwidget.html#showFullScreen
qwidget.html#showMaximized
qwidget.html#showMinimized
qwidget.html#showNormal
qwidget.html#update
qobject.html#public-slots
qwidget.html#customContextMenuRequested
qobject.html#signals
qwidget.html#find
qwidget.html#keyboardGrabber
qwidget.html#mouseGrabber
qwidget.html#setTabOrder
qobject.html#static-public-members
qwidget.html#actionEvent
qwidget.html#changeEvent
qwidget.html#closeEvent
qwidget.html#contextMenuEvent
qwidget.html#create
qwidget.html#destroy
qwidget.html#dragEnterEvent
qwidget.html#dragLeaveEvent
qwidget.html#dragMoveEvent
qwidget.html#dropEvent
qwidget.html#enterEvent
qwidget.html#focusInEvent
qwidget.html#focusNextChild
qwidget.html#focusNextPrevChild
qwidget.html#focusOutEvent
qwidget.html#focusPreviousChild
qwidget.html#hideEvent
qwidget.html#inputMethodEvent
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#leaveEvent
qwidget.html#macEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#mouseMoveEvent
qwidget.html#mousePressEvent
qwidget.html#mouseReleaseEvent
qwidget.html#moveEvent
qwidget.html#paintEvent
qwidget.html#qwsEvent
qwidget.html#resizeEvent
qwidget.html#showEvent
qwidget.html#tabletEvent
qwidget.html#wheelEvent
qwidget.html#winEvent
qwidget.html#x11Event
qwidget.html#event
qwidget.html#metric
qobject.html#protected-functions
qpaintdevice.html#protected-functions
qwidget.html#updateMicroFocus
qwidget.html#QWidgetList-typedef
qwidget.html#WId-typedef
qwidget.html#QWIDGETSIZE_MAX
qt.html#WindowType-enum
qmainwindow.html
qdialog.html
qt.html#WindowType-enum
qlabel.html
qpushbutton.html
qlistwidget.html
qtabwidget.html


Top-Level	and	Child	Widgets
A	widget	without	a	parent	widget	is	always	an	independent	window	(top-level	widget).	For	these	widgets,	setWindowTitle()	and	setWindowIcon()	set	the	title	bar	and	icon	respectively.

Non-window	widgets	are	child	widgets,	displayed	within	their	parent	widgets.	Most	widgets	in	Qt	are	mainly	useful	as	child	widgets.	For	example,	it	is	possible	to	display	a	button	as	a	top-level	window,	but	most	people	prefer	to	put	their	buttons	inside	other	widgets,	such	as	QDialog.

The	diagram	above	shows	a	QGroupBox	widget	being	used	to	hold	various	child	widgets	in	a	layout	provided	by	QGridLayout.	The	QLabel	child	widgets	have	been	outlined	to	indicate	their	full	sizes.

If	you	want	to	use	a	QWidget	to	hold	child	widgets	you	will	usually	want	to	add	a	layout	to	the	parent	QWidget.	See	Layout	Management	for	more	information.	

Composite	Widgets
When	a	widget	is	used	as	a	container	to	group	a	number	of	child	widgets,	it	is	known	as	a	composite	widget.	These	can	be	created	by	constructing	a	widget	with	the	required	visual	properties	-	a	QFrame,	for	example	-	and	adding	child	widgets	to	it,	usually	managed	by	a	layout.	The	above	diagram	shows	such	a	composite	widget	that	was	created	using	Qt	Designer.

Composite	widgets	can	also	be	created	by	subclassing	a	standard	widget,	such	as	QWidget	or	QFrame,	and	adding	the	necessary	layout	and	child	widgets	in	the	constructor	of	the	subclass.	Many	of	the	examples	provided	with	Qt	use	this	approach,	and	it	is	also	covered	in	the	Qt	Tutorials.	

Custom	Widgets	and	Painting
Since	QWidget	is	a	subclass	of	QPaintDevice,	subclasses	can	be	used	to	display	custom	content	that	is	composed	using	a	series	of	painting	operations	with	an	instance	of	the	QPainter	class.	This	approach	contrasts	with	the	canvas-style	approach	used	by	the	Graphics	View	Framework	where	items	are	added	to	a	scene	by	the	application	and	are	rendered	by	the	framework	itself.

Each	widget	performs	all	painting	operations	from	within	its	paintEvent()	function.	This	is	called	whenever	the	widget	needs	to	be	redrawn,	either	as	a	result	of	some	external	change	or	when	requested	by	the	application.

The	Analog	Clock	example	shows	how	a	simple	widget	can	handle	paint	events.	

Size	Hints	and	Size	Policies
When	implementing	a	new	widget,	it	is	almost	always	useful	to	reimplement	sizeHint()	to	provide	a	reasonable	default	size	for	the	widget	and	to	set	the	correct	size	policy	with	setSizePolicy().

By	default,	composite	widgets	which	do	not	provide	a	size	hint	will	be	sized	according	to	the	space	requirements	of	their	child	widgets.

The	size	policy	lets	you	supply	good	default	behavior	for	the	layout	management	system,	so	that	other	widgets	can	contain	and	manage	yours	easily.	The	default	size	policy	indicates	that	the	size	hint	represents	the	preferred	size	of	the	widget,	and	this	is	often	good	enough	for	many	widgets.

Note:	The	size	of	top-level	widgets	are	constrained	to	2/3	of	the	desktop's	height	and	width.	You	can	resize()	the	widget	manually	if	these	bounds	are	inadequate.	

Events
Widgets	respond	to	events	that	are	typically	caused	by	user	actions.	Qt	delivers	events	to	widgets	by	calling	specific	event	handler	functions	with	instances	of	QEvent	subclasses	containing	information	about	each	event.

If	your	widget	only	contains	child	widgets,	you	probably	do	not	need	to	implement	any	event	handlers.	If	you	want	to	detect	a	mouse	click	in	a	child	widget	call	the	child's	underMouse()	function	inside	the	widget's	mousePressEvent().

The	Scribble	example	implements	a	wider	set	of	events	to	handle	mouse	movement,	button	presses,	and	window	resizing.

You	will	need	to	supply	the	behavior	and	content	for	your	own	widgets,	but	here	is	a	brief	overview	of	the	events	that	are	relevant	to	QWidget,	starting	with	the	most	common	ones:

paintEvent()	is	called	whenever	the	widget	needs	to	be	repainted.	Every	widget	displaying	custom	content	must	implement	it.	Painting	using	a	QPainter	can	only	take	place	in	a	paintEvent()	or	a	function	called	by	a	paintEvent().
resizeEvent()	is	called	when	the	widget	has	been	resized.
mousePressEvent()	is	called	when	a	mouse	button	is	pressed	while	the	mouse	cursor	is	inside	the	widget,	or	when	the	widget	has	grabbed	the	mouse	using	grabMouse().	Pressing	the	mouse	without	releasing	it	is	effectively	the	same	as	calling	grabMouse().
mouseReleaseEvent()	is	called	when	a	mouse	button	is	released.	A	widget	receives	mouse	release	events	when	it	has	received	the	corresponding	mouse	press	event.	This	means	that	if	the	user	presses	the	mouse	inside	your	widget,	then	drags	the	mouse	somewhere	else	before	releasing	the	mouse	button,	your	widget	receives	the	release	event.	There	is	one	exception:	if	a	popup	menu	appears	while	the	mouse	button	is	held	down,	this	popup	immediately	steals	the	mouse	events.
mouseDoubleClickEvent()	is	called	when	the	user	double-clicks	in	the	widget.	If	the	user	double-clicks,	the	widget	receives	a	mouse	press	event,	a	mouse	release	event	and	finally	this	event	instead	of	a	second	mouse	press	event.	(Some	mouse	move	events	may	also	be	received	if	the	mouse	is	not	held	steady	during	this	operation.)	It	is	not	possible	to	distinguish	a	click	from	a	double-click	until	the	second	click	arrives.	(This	is	one	reason	why	most	GUI	books	recommend	that	double-clicks	be	an	extension	of	single-clicks,	rather	than	trigger	a	different	action.)

Widgets	that	accept	keyboard	input	need	to	reimplement	a	few	more	event	handlers:

keyPressEvent()	is	called	whenever	a	key	is	pressed,	and	again	when	a	key	has	been	held	down	long	enough	for	it	to	auto-repeat.	The	Tab	and	Shift+Tab	keys	are	only	passed	to	the	widget	if	they	are	not	used	by	the	focus-change	mechanisms.	To	force	those	keys	to	be	processed	by	your	widget,	you	must	reimplement	QWidget::event().
focusInEvent()	is	called	when	the	widget	gains	keyboard	focus	(assuming	you	have	called	setFocusPolicy()).	Well-behaved	widgets	indicate	that	they	own	the	keyboard	focus	in	a	clear	but	discreet	way.
focusOutEvent()	is	called	when	the	widget	loses	keyboard	focus.

You	may	be	required	to	also	reimplement	some	of	the	less	common	event	handlers:

mouseMoveEvent()	is	called	whenever	the	mouse	moves	while	a	mouse	button	is	held	down.	This	can	be	useful	during	drag	and	drop	operations.	If	you	call	setMouseTracking(true),	you	get	mouse	move	events	even	when	no	buttons	are	held	down.	(See	also	the	Drag	and	Drop	guide.)
keyReleaseEvent()	is	called	whenever	a	key	is	released	and	while	it	is	held	down	(if	the	key	is	auto-repeating).	In	that	case,	the	widget	will	receive	a	pair	of	key	release	and	key	press	event	for	every	repeat.	The	Tab	and	Shift+Tab	keys	are	only	passed	to	the	widget	if	they	are	not	used	by	the	focus-change	mechanisms.	To	force	those	keys	to	be	processed	by	your	widget,	you	must	reimplement	QWidget::event().
wheelEvent()	is	called	whenever	the	user	turns	the	mouse	wheel	while	the	widget	has	the	focus.
enterEvent()	is	called	when	the	mouse	enters	the	widget's	screen	space.	(This	excludes	screen	space	owned	by	any	of	the	widget's	children.)
leaveEvent()	is	called	when	the	mouse	leaves	the	widget's	screen	space.	If	the	mouse	enters	a	child	widget	it	will	not	cause	a	leaveEvent().
moveEvent()	is	called	when	the	widget	has	been	moved	relative	to	its	parent.
closeEvent()	is	called	when	the	user	closes	the	widget	(or	when	close()	is	called).

There	are	also	some	rather	obscure	events	described	in	the	documentation	for	QEvent::Type.	To	handle	these	events,	you	need	to	reimplement	event()	directly.

The	default	implementation	of	event()	handles	Tab	and	Shift+Tab	(to	move	the	keyboard	focus),	and	passes	on	most	of	the	other	events	to	one	of	the	more	specialized	handlers	above.

Events	and	the	mechanism	used	to	deliver	them	are	covered	in	The	Event	System.	

Groups	of	Functions	and	Properties
Context Functions	and	Properties

Window	functions show(),	hide(),	raise(),	lower(),	close().

Top-level	windows windowModified,	windowTitle,	windowIcon,	windowIconText,	isActiveWindow,	activateWindow(),	minimized,	showMinimized(),	maximized,	showMaximized(),	fullScreen,	showFullScreen(),	showNormal().

Window	contents update(),	repaint(),	scroll().

Geometry pos,	x(),	y(),	rect,	size,	width(),	height(),	move(),	resize(),	sizePolicy,	sizeHint(),	minimumSizeHint(),	updateGeometry(),	layout(),	frameGeometry,	geometry,	childrenRect,	childrenRegion,	adjustSize(),	mapFromGlobal(),	mapToGlobal(),	mapFromParent(),	mapToParent(),	maximumSize,	minimumSize,	sizeIncrement,	baseSize,	setFixedSize()

Mode visible,	isVisibleTo(),	enabled,	isEnabledTo(),	modal,	isWindow(),	mouseTracking,	updatesEnabled,	visibleRegion().

Look	and	feel style(),	setStyle(),	styleSheet,	cursor,	font,	palette,	backgroundRole(),	setBackgroundRole(),	fontInfo(),	fontMetrics().

Keyboard	focus	functions focus,	focusPolicy,	setFocus(),	clearFocus(),	setTabOrder(),	setFocusProxy(),	focusNextChild(),	focusPreviousChild().

Mouse	and	keyboard	grabbing grabMouse(),	releaseMouse(),	grabKeyboard(),	releaseKeyboard(),	mouseGrabber(),	keyboardGrabber().

Event	handlers event(),	mousePressEvent(),	mouseReleaseEvent(),	mouseDoubleClickEvent(),	mouseMoveEvent(),	keyPressEvent(),	keyReleaseEvent(),	focusInEvent(),	focusOutEvent(),	wheelEvent(),	enterEvent(),	leaveEvent(),	paintEvent(),	moveEvent(),	resizeEvent(),	closeEvent(),	dragEnterEvent(),	dragMoveEvent(),	dragLeaveEvent(),	dropEvent(),	childEvent(),	showEvent(),	hideEvent(),	customEvent().	changeEvent(),

System	functions parentWidget(),	window(),	setParent(),	winId(),	find(),	metric().

Interactive	help setToolTip(),	setWhatsThis()

Widget	Style	Sheets
In	addition	to	the	standard	widget	styles	for	each	platform,	widgets	can	also	be	styled	according	to	rules	specified	in	a	style	sheet.	This	feature	enables	you	to	customize	the	appearance	of	specific	widgets	to	provide	visual	cues	to	users	about	their	purpose.	For	example,	a	button	could	be	styled	in	a	particular	way	to	indicate	that	it	performs	a	destructive	action.

The	use	of	widget	style	sheets	is	described	in	more	detail	in	the	Qt	Style	Sheets	document.	

3

qwidget.html#windowTitle-prop
qwidget.html#windowIcon-prop
qdialog.html
qgroupbox.html
qgridlayout.html
qlabel.html
layout.html
qframe.html
designer-manual.html#qt-designer
qframe.html
all-examples.html
tutorials.html
qpaintdevice.html
qpainter.html
graphicsview.html#graphics-view
qwidget.html#paintEvent
widgets-analogclock.html
qwidget.html#sizeHint-prop
qwidget.html#sizePolicy-prop
qwidget.html#size-prop
qevent.html
qwidget.html#underMouse
qwidget.html#mousePressEvent
widgets-scribble.html
qwidget.html#paintEvent
qpainter.html
qwidget.html#paintEvent
qwidget.html#paintEvent
qwidget.html#resizeEvent
qwidget.html#mousePressEvent
qwidget.html#grabMouse
qwidget.html#grabMouse
qwidget.html#mouseReleaseEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#keyPressEvent
qwidget.html#event
qwidget.html#focusInEvent
qwidget.html#focusPolicy-prop
qwidget.html#focusOutEvent
qwidget.html#mouseMoveEvent
qwidget.html#mouseTracking-prop
dnd.html
qwidget.html#keyReleaseEvent
qwidget.html#event
qwidget.html#wheelEvent
qwidget.html#enterEvent
qwidget.html#leaveEvent
qwidget.html#leaveEvent
qwidget.html#moveEvent
qwidget.html#closeEvent
qwidget.html#close
qevent.html#Type-enum
qwidget.html#event
qwidget.html#event
eventsandfilters.html
qwidget.html#show
qwidget.html#hide
qwidget.html#raise
qwidget.html#lower
qwidget.html#close
qwidget.html#windowModified-prop
qwidget.html#windowTitle-prop
qwidget.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#isActiveWindow-prop
qwidget.html#activateWindow
qwidget.html#minimized-prop
qwidget.html#showMinimized
qwidget.html#maximized-prop
qwidget.html#showMaximized
qwidget.html#fullScreen-prop
qwidget.html#showFullScreen
qwidget.html#showNormal
qwidget.html#update
qwidget.html#repaint
qwidget.html#scroll
qwidget.html#pos-prop
qwidget.html#x-prop
qwidget.html#y-prop
qwidget.html#rect-prop
qwidget.html#size-prop
qwidget.html#width-prop
qwidget.html#height-prop
qwidget.html#pos-prop
qwidget.html#size-prop
qwidget.html#sizePolicy-prop
qwidget.html#sizeHint-prop
qwidget.html#minimumSizeHint-prop
qwidget.html#updateGeometry
qwidget.html#layout
qwidget.html#frameGeometry-prop
qwidget.html#geometry-prop
qwidget.html#childrenRect-prop
qwidget.html#childrenRegion-prop
qwidget.html#adjustSize
qwidget.html#mapFromGlobal
qwidget.html#mapToGlobal
qwidget.html#mapFromParent
qwidget.html#mapToParent
qwidget.html#maximumSize-prop
qwidget.html#minimumSize-prop
qwidget.html#sizeIncrement-prop
qwidget.html#baseSize-prop
qwidget.html#setFixedSize
qwidget.html#visible-prop
qwidget.html#isVisibleTo
qwidget.html#enabled-prop
qwidget.html#isEnabledTo
qwidget.html#modal-prop
qwidget.html#isWindow
qwidget.html#mouseTracking-prop
qwidget.html#updatesEnabled-prop
qwidget.html#visibleRegion
qwidget.html#style
qwidget.html#setStyle
qwidget.html#styleSheet-prop
qwidget.html#cursor-prop
qwidget.html#font-prop
qwidget.html#palette-prop
qwidget.html#backgroundRole
qwidget.html#setBackgroundRole
qwidget.html#fontInfo
qwidget.html#fontMetrics
qwidget.html#focus-prop
qwidget.html#focusPolicy-prop
qwidget.html#setFocus
qwidget.html#clearFocus
qwidget.html#setTabOrder
qwidget.html#setFocusProxy
qwidget.html#focusNextChild
qwidget.html#focusPreviousChild
qwidget.html#grabMouse
qwidget.html#releaseMouse
qwidget.html#grabKeyboard
qwidget.html#releaseKeyboard
qwidget.html#mouseGrabber
qwidget.html#keyboardGrabber
qwidget.html#event
qwidget.html#mousePressEvent
qwidget.html#mouseReleaseEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#mouseMoveEvent
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#wheelEvent
qwidget.html#enterEvent
qwidget.html#leaveEvent
qwidget.html#paintEvent
qwidget.html#moveEvent
qwidget.html#resizeEvent
qwidget.html#closeEvent
qwidget.html#dragEnterEvent
qwidget.html#dragMoveEvent
qwidget.html#dragLeaveEvent
qwidget.html#dropEvent
qobject.html#childEvent
qwidget.html#showEvent
qwidget.html#hideEvent
qobject.html#customEvent
qwidget.html#changeEvent
qwidget.html#parentWidget
qwidget.html#window
qwidget.html#setParent
qwidget.html#winId
qwidget.html#find
qwidget.html#metric
qwidget.html#toolTip-prop
qwidget.html#whatsThis-prop
qwidget.html#styleSheet-prop
stylesheet.html


Transparency	and	Double	Buffering
Since	Qt	4.0,	QWidget	automatically	double-buffers	its	painting,	so	there	is	no	need	to	write	double-buffering	code	in	paintEvent()	to	avoid	flicker.

Since	Qt	4.1,	the	Qt::WA_ContentsPropagated	widget	attribute	has	been	deprecated.	Instead,	the	contents	of	parent	widgets	are	propagated	by	default	to	each	of	their	children	as	long	as	Qt::WA_PaintOnScreen	is	not	set.	Custom	widgets	can	be	written	to	take	advantage	of	this	feature	by	updating	irregular	regions	(to	create	non-rectangular	child	widgets),	or	painting	with	colors	that	have	less	than	full	alpha	component.	The	following	diagram	shows	how	attributes	and	properties	of	a	custom	widget	can	be	fine-tuned	to	achieve	different	effects.

In	the	above	diagram,	a	semi-transparent	rectangular	child	widget	with	an	area	removed	is	constructed	and	added	to	a	parent	widget	(a	QLabel	showing	a	pixmap).	Then,	different	properties	and	widget	attributes	are	set	to	achieve	different	effects:

The	left	widget	has	no	additional	properties	or	widget	attributes	set.	This	default	state	suits	most	custom	widgets	using	transparency,	are	irregularly-shaped,	or	do	not	paint	over	their	entire	area	with	an	opaque	brush.
The	center	widget	has	the	autoFillBackground	property	set.	This	property	is	used	with	custom	widgets	that	rely	on	the	widget	to	supply	a	default	background,	and	do	not	paint	over	their	entire	area	with	an	opaque	brush.
The	right	widget	has	the	Qt::WA_OpaquePaintEvent	widget	attribute	set.	This	indicates	that	the	widget	will	paint	over	its	entire	area	with	opaque	colors.	The	widget's	area	will	initially	be	uninitialized,	represented	in	the	diagram	with	a	red	diagonal	grid	pattern	that	shines	through	the	overpainted	area.	The	Qt::WA_OpaquePaintArea	attribute	is	useful	for	widgets	that	need	to	paint	their	own	specialized	contents	quickly	and	do	not	need	a	default	filled	background.

To	rapidly	update	custom	widgets	with	simple	background	colors,	such	as	real-time	plotting	or	graphing	widgets,	it	is	better	to	define	a	suitable	background	color	(using	setBackgroundRole()	with	the	QPalette::Window	role),	set	the	autoFillBackground	property,	and	only	implement	the	necessary	drawing	functionality	in	the	widget's	paintEvent().

To	rapidly	update	custom	widgets	that	constantly	paint	over	their	entire	areas	with	opaque	content,	e.g.,	video	streaming	widgets,	it	is	better	to	set	the	widget's	Qt::WA_OpaquePaintEvent,	avoiding	any	unnecessary	overhead	associated	with	repainting	the	widget's	background.

If	a	widget	has	both	the	Qt::WA_OpaquePaintEvent	widget	attribute	and	the	autoFillBackground	property	set,	the	Qt::WA_OpaquePaintEvent	attribute	takes	precedence.	Depending	on	your	requirements,	you	should	choose	either	one	of	them.

Since	Qt	4.1,	the	contents	of	parent	widgets	are	also	propagated	to	standard	Qt	widgets.	This	can	lead	to	some	unexpected	results	if	the	parent	widget	is	decorated	in	a	non-standard	way,	as	shown	in	the	diagram	below.

The	scope	for	customizing	the	painting	behavior	of	standard	Qt	widgets,	without	resorting	to	subclassing,	is	slightly	less	than	that	possible	for	custom	widgets.	Usually,	the	desired	appearance	of	a	standard	widget	can	be	achieved	by	setting	its	autoFillBackground	property.	

Creating	Translucent	Windows
Since	Qt	4.5,	it	has	been	possible	to	create	windows	with	translucent	regions	on	window	systems	that	support	compositing.

To	enable	this	feature	in	a	top-level	widget,	set	its	Qt::WA_TranslucentBackground	attribute	with	setAttribute()	and	ensure	that	its	background	is	painted	with	non-opaque	colors	in	the	regions	you	want	to	be	partially	transparent.

Platform	notes:

X11:	This	feature	relies	on	the	use	of	an	X	server	that	supports	ARGB	visuals	and	a	compositing	window	manager.
Windows:	The	widget	needs	to	have	the	Qt::FramelessWindowHint	window	flag	set	for	the	translucency	to	work.	

Native	Widgets	vs	Alien	Widgets
Introduced	in	Qt	4.4,	alien	widgets	are	widgets	unknown	to	the	windowing	system.	They	do	not	have	a	native	window	handle	associated	with	them.	This	feature	significantly	speeds	up	widget	painting,	resizing,	and	removes	flicker.

Should	you	require	the	old	behavior	with	native	windows,	you	can	choose	one	of	the	following	options:

1. Use	the	QT_USE_NATIVE_WINDOWS=1	in	your	environment.
2. Set	the	Qt::AA_NativeWindows	attribute	on	your	application.	All	widgets	will	be	native	widgets.
3. Set	the	Qt::WA_NativeWindow	attribute	on	widgets:	The	widget	itself	and	all	of	its	ancestors	will	become	native	(unless	Qt::WA_DontCreateNativeAncestors	is	set).
4. Call	QWidget::winId	to	enforce	a	native	window	(this	implies	3).
5. Set	the	Qt::WA_PaintOnScreen	attribute	to	enforce	a	native	window	(this	implies	3).	

Softkeys
Since	Qt	4.6,	Softkeys	are	usually	physical	keys	on	a	device	that	have	a	corresponding	label	or	other	visual	representation	on	the	screen	that	is	generally	located	next	to	its	physical	counterpart.	They	are	most	often	found	on	mobile	phone	platforms.	In	modern	touch	based	user	interfaces	it	is	also	possible	to	have	softkeys	that	do	not	correspond	to	any	physical	keys.	Softkeys	differ	from	other	onscreen	labels	in	that	they	are	contextual.

In	Qt,	contextual	softkeys	are	added	to	a	widget	by	calling	addAction()	and	passing	a	QAction	with	a	softkey	role	set	on	it.	When	the	widget	containing	the	softkey	actions	has	focus,	its	softkeys	should	appear	in	the	user	interface.	Softkeys	are	discovered	by	traversing	the	widget	hierarchy	so	it	is	possible	to	define	a	single	set	of	softkeys	that	are	present	at	all	times	by	calling	addAction()	for	a	given	top	level	widget.

On	some	platforms,	this	concept	overlaps	with	QMenuBar	such	that	if	no	other	softkeys	are	found	and	the	top	level	widget	is	a	QMainWindow	containing	a	QMenuBar,	the	menubar	actions	may	appear	on	one	of	the	softkeys.

Note:	Currently	softkeys	are	only	supported	on	the	Symbian	Platform.

See	also	QEvent,	QPainter,	QGridLayout,	QBoxLayout,	addAction(),	QAction,	and	QMenuBar.

Member	Type	Documentation

enum	QWidget::RenderFlag
flags	QWidget::RenderFlags
This	enum	describes	how	to	render	the	widget	when	calling	QWidget::render().

Constant Value Description

QWidget::DrawWindowBackground 0x1 If	you	enable	this	option,	the	widget's	background	is	rendered	into	the	target	even	if	autoFillBackground	is	not	set.	By	default,	this	option	is	enabled.

QWidget::DrawChildren 0x2 If	you	enable	this	option,	the	widget's	children	are	rendered	recursively	into	the	target.	By	default,	this	option	is	enabled.

QWidget::IgnoreMask 0x4 If	you	enable	this	option,	the	widget's	QWidget::mask()	is	ignored	when	rendering	into	the	target.	By	default,	this	option	is	disabled.

This	enum	was	introduced	or	modified	in	Qt	4.3.

The	RenderFlags	type	is	a	typedef	for	QFlags<RenderFlag>.	It	stores	an	OR	combination	of	RenderFlag	values.

Property	Documentation

acceptDrops	:	bool
4

qwidget.html#paintEvent
qt.html#WidgetAttribute-enum
qt.html#WidgetAttribute-enum
qlabel.html
qwidget.html#autoFillBackground-prop
qt.html#WidgetAttribute-enum
qwidget.html#setBackgroundRole
qpalette.html#ColorRole-enum
qwidget.html#autoFillBackground-prop
qwidget.html#paintEvent
qt.html#WidgetAttribute-enum
qt.html#WidgetAttribute-enum
qwidget.html#autoFillBackground-prop
qt.html#WidgetAttribute-enum
qwidget.html#autoFillBackground-prop
qt.html#WidgetAttribute-enum
qwidget.html#setAttribute
qt.html#WindowType-enum
qt.html#ApplicationAttribute-enum
qt.html#WidgetAttribute-enum
qt.html#WidgetAttribute-enum
qt.html#WidgetAttribute-enum
qwidget.html#addAction
qwidget.html#addAction
qmainwindow.html
qmenubar.html
qevent.html
qpainter.html
qgridlayout.html
qboxlayout.html
qwidget.html#addAction
qaction.html
qmenubar.html
qwidget.html#render
qwidget.html#autoFillBackground-prop
qwidget.html#mask
qflags.html


This	property	holds	whether	drop	events	are	enabled	for	this	widget.

Setting	this	property	to	true	announces	to	the	system	that	this	widget	may	be	able	to	accept	drop	events.

If	the	widget	is	the	desktop	(windowType()	==	Qt::Desktop),	this	may	fail	if	another	application	is	using	the	desktop;	you	can	call	acceptDrops()	to	test	if	this	occurs.

Warning:	Do	not	modify	this	property	in	a	drag	and	drop	event	handler.

By	default,	this	property	is	false.

Access	functions:

bool	 acceptDrops	()	const

void	 setAcceptDrops	(	bool	on	)

See	also	Drag	and	Drop.

accessibleDescription	:	QString
This	property	holds	the	widget's	description	as	seen	by	assistive	technologies.

By	default,	this	property	contains	an	empty	string.

Access	functions:

QString	 accessibleDescription	()	const

void	 setAccessibleDescription	(	const	QString	&	description	)

See	also	QAccessibleInterface::text().

accessibleName	:	QString
This	property	holds	the	widget's	name	as	seen	by	assistive	technologies.

This	property	is	used	by	accessible	clients	to	identify,	find,	or	announce	the	widget	for	accessible	clients.

By	default,	this	property	contains	an	empty	string.

Access	functions:

QString	 accessibleName	()	const

void	 setAccessibleName	(	const	QString	&	name	)

See	also	QAccessibleInterface::text().

autoFillBackground	:	bool
This	property	holds	whether	the	widget	background	is	filled	automatically.

If	enabled,	this	property	will	cause	Qt	to	fill	the	background	of	the	widget	before	invoking	the	paint	event.	The	color	used	is	defined	by	the	QPalette::Window	color	role	from	the	widget's	palette.

In	addition,	Windows	are	always	filled	with	QPalette::Window,	unless	the	WA_OpaquePaintEvent	or	WA_NoSystemBackground	attributes	are	set.

This	property	cannot	be	turned	off	(i.e.,	set	to	false)	if	a	widget's	parent	has	a	static	gradient	for	its	background.

Warning:	Use	this	property	with	caution	in	conjunction	with	Qt	Style	Sheets.	When	a	widget	has	a	style	sheet	with	a	valid	background	or	a	border-image,	this	property	is	automatically	disabled.

By	default,	this	property	is	false.

This	property	was	introduced	in	Qt	4.1.

Access	functions:

bool	 autoFillBackground	()	const

void	 setAutoFillBackground	(	bool	enabled	)

See	also	Qt::WA_OpaquePaintEvent,	Qt::WA_NoSystemBackground,	and	Transparency	and	Double	Buffering.

baseSize	:	QSize
This	property	holds	the	base	size	of	the	widget.

The	base	size	is	used	to	calculate	a	proper	widget	size	if	the	widget	defines	sizeIncrement().

By	default,	for	a	newly-created	widget,	this	property	contains	a	size	with	zero	width	and	height.

Access	functions:

QSize	 baseSize	()	const

void	 setBaseSize	(	const	QSize	&	)

void	 setBaseSize	(	int	basew,	int	baseh	)

See	also	setSizeIncrement().

childrenRect	:	const	QRect
This	property	holds	the	bounding	rectangle	of	the	widget's	children.

Hidden	children	are	excluded.

By	default,	for	a	widget	with	no	children,	this	property	contains	a	rectangle	with	zero	width	and	height	located	at	the	origin.

Access	functions:

QRect	 childrenRect	()	const

See	also	childrenRegion()	and	geometry().

childrenRegion	:	const	QRegion
This	property	holds	the	combined	region	occupied	by	the	widget's	children.

Hidden	children	are	excluded.

By	default,	for	a	widget	with	no	children,	this	property	contains	an	empty	region.

Access	functions:

QRegion	 childrenRegion	()	const

See	also	childrenRect(),	geometry(),	and	mask().

contextMenuPolicy	:	Qt::ContextMenuPolicy
This	property	holds	how	the	widget	shows	a	context	menu.

The	default	value	of	this	property	is	Qt::DefaultContextMenu,	which	means	the	contextMenuEvent()	handler	is	called.	Other	values	are	Qt::NoContextMenu,	Qt::PreventContextMenu,	Qt::ActionsContextMenu,	and	Qt::CustomContextMenu.	With	Qt::CustomContextMenu,	the	signal	customContextMenuRequested()	is	emitted.

Access	functions:

Qt::ContextMenuPolicy	 contextMenuPolicy	()	const

void	 setContextMenuPolicy	(	Qt::ContextMenuPolicy	policy	)

See	also	contextMenuEvent(),	customContextMenuRequested(),	and	actions().

cursor	:	QCursor
This	property	holds	the	cursor	shape	for	this	widget.

The	mouse	cursor	will	assume	this	shape	when	it's	over	this	widget.	See	the	list	of	predefined	cursor	objects	for	a	range	of	useful	shapes.

An	editor	widget	might	use	an	I-beam	cursor:

	setCursor(Qt::IBeamCursor);

5

qwidget.html#windowType
qt.html#WindowType-enum
dnd.html
qstring.html
qaccessibleinterface.html#text
qstring.html
qaccessibleinterface.html#text
qpalette.html#ColorRole-enum
qpalette.html
qpalette.html#ColorRole-enum
stylesheet.html
qt.html#WidgetAttribute-enum
qt.html#WidgetAttribute-enum
qwidget.html#transparency-and-double-buffering
qsize.html
qwidget.html#sizeIncrement-prop
qwidget.html#sizeIncrement-prop
qrect.html
qwidget.html#childrenRegion-prop
qwidget.html#geometry-prop
qregion.html
qwidget.html#childrenRect-prop
qwidget.html#geometry-prop
qwidget.html#mask
qt.html#ContextMenuPolicy-enum
qt.html#ContextMenuPolicy-enum
qwidget.html#contextMenuEvent
qt.html#ContextMenuPolicy-enum
qt.html#ContextMenuPolicy-enum
qt.html#ContextMenuPolicy-enum
qt.html#ContextMenuPolicy-enum
qt.html#ContextMenuPolicy-enum
qwidget.html#customContextMenuRequested
qwidget.html#contextMenuEvent
qwidget.html#customContextMenuRequested
qwidget.html#actions
qcursor.html
qt.html#CursorShape-enum
qt.html


If	no	cursor	has	been	set,	or	after	a	call	to	unsetCursor(),	the	parent's	cursor	is	used.

By	default,	this	property	contains	a	cursor	with	the	Qt::ArrowCursor	shape.

Some	underlying	window	implementations	will	reset	the	cursor	if	it	leaves	a	widget	even	if	the	mouse	is	grabbed.	If	you	want	to	have	a	cursor	set	for	all	widgets,	even	when	outside	the	window,	consider	QApplication::setOverrideCursor().

Access	functions:

QCursor	 cursor	()	const

void	 setCursor	(	const	QCursor	&	)

void	 unsetCursor	()

See	also	QApplication::setOverrideCursor().

enabled	:	bool
This	property	holds	whether	the	widget	is	enabled.

In	general	an	enabled	widget	handles	keyboard	and	mouse	events;	a	disabled	widget	does	not.	An	exception	is	made	with	QAbstractButton.

Some	widgets	display	themselves	differently	when	they	are	disabled.	For	example	a	button	might	draw	its	label	grayed	out.	If	your	widget	needs	to	know	when	it	becomes	enabled	or	disabled,	you	can	use	the	changeEvent()	with	type	QEvent::EnabledChange.

Disabling	a	widget	implicitly	disables	all	its	children.	Enabling	respectively	enables	all	child	widgets	unless	they	have	been	explicitly	disabled.

By	default,	this	property	is	true.

Access	functions:

bool	 isEnabled	()	const

void	 setEnabled	(	bool	)

See	also	isEnabledTo(),	QKeyEvent,	QMouseEvent,	and	changeEvent().

focus	:	const	bool
This	property	holds	whether	this	widget	(or	its	focus	proxy)	has	the	keyboard	input	focus.

By	default,	this	property	is	false.

Note:	Obtaining	the	value	of	this	property	for	a	widget	is	effectively	equivalent	to	checking	whether	QApplication::focusWidget()	refers	to	the	widget.

Access	functions:

bool	 hasFocus	()	const

See	also	setFocus(),	clearFocus(),	setFocusPolicy(),	and	QApplication::focusWidget().

focusPolicy	:	Qt::FocusPolicy
This	property	holds	the	way	the	widget	accepts	keyboard	focus.

The	policy	is	Qt::TabFocus	if	the	widget	accepts	keyboard	focus	by	tabbing,	Qt::ClickFocus	if	the	widget	accepts	focus	by	clicking,	Qt::StrongFocus	if	it	accepts	both,	and	Qt::NoFocus	(the	default)	if	it	does	not	accept	focus	at	all.

You	must	enable	keyboard	focus	for	a	widget	if	it	processes	keyboard	events.	This	is	normally	done	from	the	widget's	constructor.	For	instance,	the	QLineEdit	constructor	calls	setFocusPolicy(Qt::StrongFocus).

If	the	widget	has	a	focus	proxy,	then	the	focus	policy	will	be	propagated	to	it.

Access	functions:

Qt::FocusPolicy	 focusPolicy	()	const

void	 setFocusPolicy	(	Qt::FocusPolicy	policy	)

See	also	focusInEvent(),	focusOutEvent(),	keyPressEvent(),	keyReleaseEvent(),	and	enabled.

font	:	QFont
This	property	holds	the	font	currently	set	for	the	widget.

This	property	describes	the	widget's	requested	font.	The	font	is	used	by	the	widget's	style	when	rendering	standard	components,	and	is	available	as	a	means	to	ensure	that	custom	widgets	can	maintain	consistency	with	the	native	platform's	look	and	feel.	It's	common	that	different	platforms,	or	different	styles,	define	different	fonts	for	an	application.

When	you	assign	a	new	font	to	a	widget,	the	properties	from	this	font	are	combined	with	the	widget's	default	font	to	form	the	widget's	final	font.	You	can	call	fontInfo()	to	get	a	copy	of	the	widget's	final	font.	The	final	font	is	also	used	to	initialize	QPainter's	font.

The	default	depends	on	the	system	environment.	QApplication	maintains	a	system/theme	font	which	serves	as	a	default	for	all	widgets.	There	may	also	be	special	font	defaults	for	certain	types	of	widgets.	You	can	also	define	default	fonts	for	widgets	yourself	by	passing	a	custom	font	and	the	name	of	a	widget	to	QApplication::setFont().	Finally,	the	font	is	matched	against	Qt's	font	database	to	find	the	best	match.

QWidget	propagates	explicit	font	properties	from	parent	to	child.	If	you	change	a	specific	property	on	a	font	and	assign	that	font	to	a	widget,	that	property	will	propagate	to	all	the	widget's	children,	overriding	any	system	defaults	for	that	property.	Note	that	fonts	by	default	don't	propagate	to	windows	(see	isWindow())	unless	the	Qt::WA_WindowPropagation	attribute	is	enabled.

QWidget's	font	propagation	is	similar	to	its	palette	propagation.

The	current	style,	which	is	used	to	render	the	content	of	all	standard	Qt	widgets,	is	free	to	choose	to	use	the	widget	font,	or	in	some	cases,	to	ignore	it	(partially,	or	completely).	In	particular,	certain	styles	like	GTK	style,	Mac	style,	Windows	XP,	and	Vista	style,	apply	special	modifications	to	the	widget	font	to	match	the	platform's	native	look	and	feel.	Because	of	this,	assigning	properties	to	a	widget's	font	is	not	guaranteed	to	change	the	appearance	of	the	widget.	Instead,	you	may	choose	to	apply	a	styleSheet.

Note:	If	Qt	Style	Sheets	are	used	on	the	same	widget	as	setFont(),	style	sheets	will	take	precedence	if	the	settings	conflict.

Access	functions:

const	QFont	&	 font	()	const

void	 setFont	(	const	QFont	&	)

See	also	fontInfo()	and	fontMetrics().

frameGeometry	:	const	QRect
This	property	holds	geometry	of	the	widget	relative	to	its	parent	including	any	window	frame.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

QRect	 frameGeometry	()	const

See	also	geometry(),	x(),	y(),	and	pos().

frameSize	:	const	QSize
This	property	holds	the	size	of	the	widget	including	any	window	frame.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

QSize	 frameSize	()	const

fullScreen	:	const	bool
This	property	holds	whether	the	widget	is	shown	in	full	screen	mode.

A	widget	in	full	screen	mode	occupies	the	whole	screen	area	and	does	not	display	window	decorations,	such	as	a	title	bar.

By	default,	this	property	is	false.

Access	functions:

bool	 isFullScreen	()	const

See	also	windowState(),	minimized,	and	maximized.

geometry	:	QRect
This	property	holds	the	geometry	of	the	widget	relative	to	its	parent	and	excluding	the	window	frame.

When	changing	the	geometry,	the	widget,	if	visible,	receives	a	move	event	(moveEvent())	and/or	a	resize	event	(resizeEvent())	immediately.	If	the	widget	is	not	currently	visible,	it	is	guaranteed	to	receive	appropriate	events	before	it	is	shown.

The	size	component	is	adjusted	if	it	lies	outside	the	range	defined	by	minimumSize()	and	maximumSize().

6

qt.html#CursorShape-enum
qapplication.html#setOverrideCursor
qapplication.html#setOverrideCursor
qabstractbutton.html
qwidget.html#changeEvent
qevent.html#Type-enum
qwidget.html#isEnabledTo
qkeyevent.html
qmouseevent.html
qwidget.html#changeEvent
qapplication.html#focusWidget
qwidget.html#setFocus
qwidget.html#clearFocus
qwidget.html#focusPolicy-prop
qapplication.html#focusWidget
qt.html#FocusPolicy-enum
qt.html#FocusPolicy-enum
qt.html#FocusPolicy-enum
qt.html#FocusPolicy-enum
qt.html#FocusPolicy-enum
qlineedit.html
qt.html#FocusPolicy-enum
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#enabled-prop
qfont.html
qwidget.html#fontInfo
qpainter.html
qapplication.html
qapplication.html#setFont
qwidget.html
qwidget.html#isWindow
qt.html#WidgetAttribute-enum
qwidget.html
qwidget.html#styleSheet-prop
stylesheet.html
qwidget.html#fontInfo
qwidget.html#fontMetrics
qrect.html
application-windows.html#window-geometry
qwidget.html#geometry-prop
qwidget.html#x-prop
qwidget.html#y-prop
qwidget.html#pos-prop
qsize.html
qwidget.html#windowState
qwidget.html#minimized-prop
qwidget.html#maximized-prop
qrect.html
qwidget.html#moveEvent
qwidget.html#resizeEvent
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop


Warning:	Calling	setGeometry()	inside	resizeEvent()	or	moveEvent()	can	lead	to	infinite	recursion.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

const	QRect	&	 geometry	()	const

void	 setGeometry	(	int	x,	int	y,	int	w,	int	h	)

void	 setGeometry	(	const	QRect	&	)

See	also	frameGeometry(),	rect(),	move(),	resize(),	moveEvent(),	resizeEvent(),	minimumSize(),	and	maximumSize().

height	:	const	int
This	property	holds	the	height	of	the	widget	excluding	any	window	frame.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

Note:	Do	not	use	this	function	to	find	the	height	of	a	screen	on	a	multiple	screen	desktop.	Read	this	note	for	details.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

int	 height	()	const

See	also	geometry,	width,	and	size.

inputMethodHints	:	Qt::InputMethodHints
This	property	holds	what	input	method	specific	hints	the	widget	has.

This	is	only	relevant	for	input	widgets.	It	is	used	by	the	input	method	to	retrieve	hints	as	to	how	the	input	method	should	operate.	For	example,	if	the	Qt::ImhFormattedNumbersOnly	flag	is	set,	the	input	method	may	change	its	visual	components	to	reflect	that	only	numbers	can	be	entered.

Note:	The	flags	are	only	hints,	so	the	particular	input	method	implementation	is	free	to	ignore	them.	If	you	want	to	be	sure	that	a	certain	type	of	characters	are	entered,	you	should	also	set	a	QValidator	on	the	widget.

The	default	value	is	Qt::ImhNone.

This	property	was	introduced	in	Qt	4.6.

Access	functions:

Qt::InputMethodHints	 inputMethodHints	()	const

void	 setInputMethodHints	(	Qt::InputMethodHints	hints	)

See	also	inputMethodQuery()	and	QInputContext.

isActiveWindow	:	const	bool
This	property	holds	whether	this	widget's	window	is	the	active	window.

The	active	window	is	the	window	that	contains	the	widget	that	has	keyboard	focus	(The	window	may	still	have	focus	if	it	has	no	widgets	or	none	of	its	widgets	accepts	keyboard	focus).

When	popup	windows	are	visible,	this	property	is	true	for	both	the	active	window	and	for	the	popup.

By	default,	this	property	is	false.

Access	functions:

bool	 isActiveWindow	()	const

See	also	activateWindow()	and	QApplication::activeWindow().

layoutDirection	:	Qt::LayoutDirection
This	property	holds	the	layout	direction	for	this	widget.

By	default,	this	property	is	set	to	Qt::LeftToRight.

When	the	layout	direction	is	set	on	a	widget,	it	will	propagate	to	the	widget's	children,	but	not	to	a	child	that	is	a	window	and	not	to	a	child	for	which	setLayoutDirection()	has	been	explicitly	called.	Also,	child	widgets	added	after	setLayoutDirection()	has	been	called	for	the	parent	do	not	inherit	the	parent's	layout	direction.

This	method	no	longer	affects	text	layout	direction	since	Qt	4.7.

Access	functions:

Qt::LayoutDirection	 layoutDirection	()	const

void	 setLayoutDirection	(	Qt::LayoutDirection	direction	)

void	 unsetLayoutDirection	()

See	also	QApplication::layoutDirection.

locale	:	QLocale
This	property	holds	the	widget's	locale.

As	long	as	no	special	locale	has	been	set,	this	is	either	the	parent's	locale	or	(if	this	widget	is	a	top	level	widget),	the	default	locale.

If	the	widget	displays	dates	or	numbers,	these	should	be	formatted	using	the	widget's	locale.

This	property	was	introduced	in	Qt	4.3.

Access	functions:

QLocale	 locale	()	const

void	 setLocale	(	const	QLocale	&	locale	)

void	 unsetLocale	()

See	also	QLocale	and	QLocale::setDefault().

maximized	:	const	bool
This	property	holds	whether	this	widget	is	maximized.

This	property	is	only	relevant	for	windows.

Note:	Due	to	limitations	on	some	window	systems,	this	does	not	always	report	the	expected	results	(e.g.,	if	the	user	on	X11	maximizes	the	window	via	the	window	manager,	Qt	has	no	way	of	distinguishing	this	from	any	other	resize).	This	is	expected	to	improve	as	window	manager	protocols	evolve.

By	default,	this	property	is	false.

Access	functions:

bool	 isMaximized	()	const

See	also	windowState(),	showMaximized(),	visible,	show(),	hide(),	showNormal(),	and	minimized.

maximumHeight	:	int
This	property	holds	the	widget's	maximum	height	in	pixels.

This	property	corresponds	to	the	height	held	by	the	maximumSize	property.

By	default,	this	property	contains	a	value	of	16777215.

Note:	The	definition	of	the	QWIDGETSIZE_MAX	macro	limits	the	maximum	size	of	widgets.

Access	functions:

int	 maximumHeight	()	const

void	 setMaximumHeight	(	int	maxh	)

See	also	maximumSize	and	maximumWidth.

maximumSize	:	QSize

7

qwidget.html#resizeEvent
qwidget.html#moveEvent
application-windows.html#window-geometry
qwidget.html#frameGeometry-prop
qwidget.html#rect-prop
qwidget.html#pos-prop
qwidget.html#size-prop
qwidget.html#moveEvent
qwidget.html#resizeEvent
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop
application-windows.html#window-geometry
qdesktopwidget.html
qdesktopwidget.html#screen-geometry
qwidget.html#geometry-prop
qwidget.html#width-prop
qwidget.html#size-prop
qt.html#InputMethodHint-enum
qt.html#InputMethodHint-enum
qvalidator.html
qt.html#InputMethodHint-enum
qwidget.html#inputMethodQuery
qinputcontext.html
qwidget.html#activateWindow
qapplication.html#activeWindow
qt.html#LayoutDirection-enum
qt.html#LayoutDirection-enum
qapplication.html#layoutDirection-prop
qlocale.html
qlocale.html
qlocale.html#setDefault
qwidget.html#windowState
qwidget.html#showMaximized
qwidget.html#visible-prop
qwidget.html#show
qwidget.html#hide
qwidget.html#showNormal
qwidget.html#minimized-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumWidth-prop
qsize.html


This	property	holds	the	widget's	maximum	size	in	pixels.

The	widget	cannot	be	resized	to	a	larger	size	than	the	maximum	widget	size.

By	default,	this	property	contains	a	size	in	which	both	width	and	height	have	values	of	16777215.

Note:	The	definition	of	the	QWIDGETSIZE_MAX	macro	limits	the	maximum	size	of	widgets.

Access	functions:

QSize	 maximumSize	()	const

void	 setMaximumSize	(	const	QSize	&	)

void	 setMaximumSize	(	int	maxw,	int	maxh	)

See	also	maximumWidth,	maximumHeight,	minimumSize,	and	sizeIncrement.

maximumWidth	:	int
This	property	holds	the	widget's	maximum	width	in	pixels.

This	property	corresponds	to	the	width	held	by	the	maximumSize	property.

By	default,	this	property	contains	a	value	of	16777215.

Note:	The	definition	of	the	QWIDGETSIZE_MAX	macro	limits	the	maximum	size	of	widgets.

Access	functions:

int	 maximumWidth	()	const

void	 setMaximumWidth	(	int	maxw	)

See	also	maximumSize	and	maximumHeight.

minimized	:	const	bool
This	property	holds	whether	this	widget	is	minimized	(iconified).

This	property	is	only	relevant	for	windows.

By	default,	this	property	is	false.

Access	functions:

bool	 isMinimized	()	const

See	also	showMinimized(),	visible,	show(),	hide(),	showNormal(),	and	maximized.

minimumHeight	:	int
This	property	holds	the	widget's	minimum	height	in	pixels.

This	property	corresponds	to	the	height	held	by	the	minimumSize	property.

By	default,	this	property	has	a	value	of	0.

Access	functions:

int	 minimumHeight	()	const

void	 setMinimumHeight	(	int	minh	)

See	also	minimumSize	and	minimumWidth.

minimumSize	:	QSize
This	property	holds	the	widget's	minimum	size.

The	widget	cannot	be	resized	to	a	smaller	size	than	the	minimum	widget	size.	The	widget's	size	is	forced	to	the	minimum	size	if	the	current	size	is	smaller.

The	minimum	size	set	by	this	function	will	override	the	minimum	size	defined	by	QLayout.	In	order	to	unset	the	minimum	size,	use	a	value	of	QSize(0,	0).

By	default,	this	property	contains	a	size	with	zero	width	and	height.

Access	functions:

QSize	 minimumSize	()	const

void	 setMinimumSize	(	const	QSize	&	)

void	 setMinimumSize	(	int	minw,	int	minh	)

See	also	minimumWidth,	minimumHeight,	maximumSize,	and	sizeIncrement.

minimumSizeHint	:	const	QSize
This	property	holds	the	recommended	minimum	size	for	the	widget.

If	the	value	of	this	property	is	an	invalid	size,	no	minimum	size	is	recommended.

The	default	implementation	of	minimumSizeHint()	returns	an	invalid	size	if	there	is	no	layout	for	this	widget,	and	returns	the	layout's	minimum	size	otherwise.	Most	built-in	widgets	reimplement	minimumSizeHint().

QLayout	will	never	resize	a	widget	to	a	size	smaller	than	the	minimum	size	hint	unless	minimumSize()	is	set	or	the	size	policy	is	set	to	QSizePolicy::Ignore.	If	minimumSize()	is	set,	the	minimum	size	hint	will	be	ignored.

Access	functions:

virtual	QSize	 minimumSizeHint	()	const

See	also	QSize::isValid(),	resize(),	setMinimumSize(),	and	sizePolicy().

minimumWidth	:	int
This	property	holds	the	widget's	minimum	width	in	pixels.

This	property	corresponds	to	the	width	held	by	the	minimumSize	property.

By	default,	this	property	has	a	value	of	0.

Access	functions:

int	 minimumWidth	()	const

void	 setMinimumWidth	(	int	minw	)

See	also	minimumSize	and	minimumHeight.

modal	:	const	bool
This	property	holds	whether	the	widget	is	a	modal	widget.

This	property	only	makes	sense	for	windows.	A	modal	widget	prevents	widgets	in	all	other	windows	from	getting	any	input.

By	default,	this	property	is	false.

Access	functions:

bool	 isModal	()	const

See	also	isWindow(),	windowModality,	and	QDialog.

mouseTracking	:	bool
This	property	holds	whether	mouse	tracking	is	enabled	for	the	widget.

If	mouse	tracking	is	disabled	(the	default),	the	widget	only	receives	mouse	move	events	when	at	least	one	mouse	button	is	pressed	while	the	mouse	is	being	moved.

If	mouse	tracking	is	enabled,	the	widget	receives	mouse	move	events	even	if	no	buttons	are	pressed.

Access	functions:

bool	 hasMouseTracking	()	const

void	 setMouseTracking	(	bool	enable	)

8

qwidget.html#maximumWidth-prop
qwidget.html#maximumHeight-prop
qwidget.html#minimumSize-prop
qwidget.html#sizeIncrement-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#maximumHeight-prop
qwidget.html#showMinimized
qwidget.html#visible-prop
qwidget.html#show
qwidget.html#hide
qwidget.html#showNormal
qwidget.html#maximized-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumWidth-prop
qsize.html
qlayout.html
qwidget.html#minimumWidth-prop
qwidget.html#minimumHeight-prop
qwidget.html#maximumSize-prop
qwidget.html#sizeIncrement-prop
qsize.html
qlayout.html
qwidget.html#minimumSize-prop
qwidget.html#minimumSize-prop
qsize.html#isValid
qwidget.html#size-prop
qwidget.html#minimumSize-prop
qwidget.html#sizePolicy-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumSize-prop
qwidget.html#minimumHeight-prop
qwidget.html#isWindow
qwidget.html#windowModality-prop
qdialog.html


See	also	mouseMoveEvent().

normalGeometry	:	const	QRect
This	property	holds	the	geometry	of	the	widget	as	it	will	appear	when	shown	as	a	normal	(not	maximized	or	full	screen)	top-level	widget.

For	child	widgets	this	property	always	holds	an	empty	rectangle.

By	default,	this	property	contains	an	empty	rectangle.

Access	functions:

QRect	 normalGeometry	()	const

See	also	QWidget::windowState()	and	QWidget::geometry.

palette	:	QPalette
This	property	holds	the	widget's	palette.

This	property	describes	the	widget's	palette.	The	palette	is	used	by	the	widget's	style	when	rendering	standard	components,	and	is	available	as	a	means	to	ensure	that	custom	widgets	can	maintain	consistency	with	the	native	platform's	look	and	feel.	It's	common	that	different	platforms,	or	different	styles,	have	different	palettes.

When	you	assign	a	new	palette	to	a	widget,	the	color	roles	from	this	palette	are	combined	with	the	widget's	default	palette	to	form	the	widget's	final	palette.	The	palette	entry	for	the	widget's	background	role	is	used	to	fill	the	widget's	background	(see	QWidget::autoFillBackground),	and	the	foreground	role	initializes	QPainter's	pen.

The	default	depends	on	the	system	environment.	QApplication	maintains	a	system/theme	palette	which	serves	as	a	default	for	all	widgets.	There	may	also	be	special	palette	defaults	for	certain	types	of	widgets	(e.g.,	on	Windows	XP	and	Vista,	all	classes	that	derive	from	QMenuBar	have	a	special	default	palette).	You	can	also	define	default	palettes	for	widgets	yourself	by	passing	a	custom	palette	and	the	name	of	a	widget	to	QApplication::setPalette().	Finally,	the	style	always	has	the	option	of	polishing	the	palette	as	it's	assigned	(see	QStyle::polish()).

QWidget	propagates	explicit	palette	roles	from	parent	to	child.	If	you	assign	a	brush	or	color	to	a	specific	role	on	a	palette	and	assign	that	palette	to	a	widget,	that	role	will	propagate	to	all	the	widget's	children,	overriding	any	system	defaults	for	that	role.	Note	that	palettes	by	default	don't	propagate	to	windows	(see	isWindow())	unless	the	Qt::WA_WindowPropagation	attribute	is	enabled.

QWidget's	palette	propagation	is	similar	to	its	font	propagation.

The	current	style,	which	is	used	to	render	the	content	of	all	standard	Qt	widgets,	is	free	to	choose	colors	and	brushes	from	the	widget	palette,	or	in	some	cases,	to	ignore	the	palette	(partially,	or	completely).	In	particular,	certain	styles	like	GTK	style,	Mac	style,	Windows	XP,	and	Vista	style,	depend	on	third	party	APIs	to	render	the	content	of	widgets,	and	these	styles	typically	do	not	follow	the	palette.	Because	of	this,	assigning	roles	to	a	widget's	palette	is	not	guaranteed	to	change	the	appearance	of	the	widget.	Instead,	you	may	choose	to	apply	a	styleSheet.	You	can	refer	to	our	Knowledge	Base	article	here	for	more	information.

Warning:	Do	not	use	this	function	in	conjunction	with	Qt	Style	Sheets.	When	using	style	sheets,	the	palette	of	a	widget	can	be	customized	using	the	"color",	"background-color",	"selection-color",	"selection-background-color"	and	"alternate-background-color".

Access	functions:

const	QPalette	&	 palette	()	const

void	 setPalette	(	const	QPalette	&	)

See	also	QApplication::palette()	and	QWidget::font().

pos	:	QPoint
This	property	holds	the	position	of	the	widget	within	its	parent	widget.

If	the	widget	is	a	window,	the	position	is	that	of	the	widget	on	the	desktop,	including	its	frame.

When	changing	the	position,	the	widget,	if	visible,	receives	a	move	event	(moveEvent())	immediately.	If	the	widget	is	not	currently	visible,	it	is	guaranteed	to	receive	an	event	before	it	is	shown.

By	default,	this	property	contains	a	position	that	refers	to	the	origin.

Warning:	Calling	move()	or	setGeometry()	inside	moveEvent()	can	lead	to	infinite	recursion.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

Access	functions:

QPoint	 pos	()	const

void	 move	(	int	x,	int	y	)

void	 move	(	const	QPoint	&	)

See	also	frameGeometry,	size,	x(),	and	y().

rect	:	const	QRect
This	property	holds	the	internal	geometry	of	the	widget	excluding	any	window	frame.

The	rect	property	equals	QRect(0,	0,	width(),	height()).

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

QRect	 rect	()	const

See	also	size.

size	:	QSize
This	property	holds	the	size	of	the	widget	excluding	any	window	frame.

If	the	widget	is	visible	when	it	is	being	resized,	it	receives	a	resize	event	(resizeEvent())	immediately.	If	the	widget	is	not	currently	visible,	it	is	guaranteed	to	receive	an	event	before	it	is	shown.

The	size	is	adjusted	if	it	lies	outside	the	range	defined	by	minimumSize()	and	maximumSize().

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Warning:	Calling	resize()	or	setGeometry()	inside	resizeEvent()	can	lead	to	infinite	recursion.

Note:	Setting	the	size	to	QSize(0,	0)	will	cause	the	widget	to	not	appear	on	screen.	This	also	applies	to	windows.

Access	functions:

QSize	 size	()	const

void	 resize	(	int	w,	int	h	)

void	 resize	(	const	QSize	&	)

See	also	pos,	geometry,	minimumSize,	maximumSize,	resizeEvent(),	and	adjustSize().

sizeHint	:	const	QSize
This	property	holds	the	recommended	size	for	the	widget.

If	the	value	of	this	property	is	an	invalid	size,	no	size	is	recommended.

The	default	implementation	of	sizeHint()	returns	an	invalid	size	if	there	is	no	layout	for	this	widget,	and	returns	the	layout's	preferred	size	otherwise.

Access	functions:

virtual	QSize	 sizeHint	()	const

See	also	QSize::isValid(),	minimumSizeHint(),	sizePolicy(),	setMinimumSize(),	and	updateGeometry().

sizeIncrement	:	QSize
This	property	holds	the	size	increment	of	the	widget.

When	the	user	resizes	the	window,	the	size	will	move	in	steps	of	sizeIncrement().width()	pixels	horizontally	and	sizeIncrement.height()	pixels	vertically,	with	baseSize()	as	the	basis.	Preferred	widget	sizes	are	for	non-negative	integers	i	and	j:

	width	=	baseSize().width()	+	i	*	sizeIncrement().width();
	height	=	baseSize().height()	+	j	*	sizeIncrement().height();

Note	that	while	you	can	set	the	size	increment	for	all	widgets,	it	only	affects	windows.

By	default,	this	property	contains	a	size	with	zero	width	and	height.

Warning:	The	size	increment	has	no	effect	under	Windows,	and	may	be	disregarded	by	the	window	manager	on	X11.

Access	functions:

QSize	 sizeIncrement	()	const

void	 setSizeIncrement	(	const	QSize	&	)

void	 setSizeIncrement	(	int	w,	int	h	)

See	also	size,	minimumSize,	and	maximumSize.

9

qwidget.html#mouseMoveEvent
qrect.html
qwidget.html#windowState
qwidget.html#geometry-prop
qpalette.html
qwidget.html#autoFillBackground-prop
qpainter.html
qapplication.html
qmenubar.html
qapplication.html#setPalette
qstyle.html#polish
qwidget.html
qwidget.html#isWindow
qt.html#WidgetAttribute-enum
qwidget.html
qwidget.html#styleSheet-prop
http://qt.nokia.com/developer/knowledgebase/22
stylesheet.html
qapplication.html#palette
qwidget.html#font-prop
qpoint.html
qwidget.html#moveEvent
qwidget.html#geometry-prop
qwidget.html#moveEvent
application-windows.html#window-geometry
qwidget.html#frameGeometry-prop
qwidget.html#size-prop
qwidget.html#x-prop
qwidget.html#y-prop
qrect.html
qrect.html
qwidget.html#width-prop
qwidget.html#height-prop
application-windows.html#window-geometry
qwidget.html#size-prop
qsize.html
qwidget.html#resizeEvent
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#geometry-prop
qwidget.html#resizeEvent
qwidget.html#pos-prop
qwidget.html#geometry-prop
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#resizeEvent
qwidget.html#adjustSize
qsize.html
qsize.html#isValid
qwidget.html#minimumSizeHint-prop
qwidget.html#sizePolicy-prop
qwidget.html#minimumSize-prop
qwidget.html#updateGeometry
qsize.html
qwidget.html#width-prop
qwidget.html#height-prop
qwidget.html#baseSize-prop
qwidget.html#baseSize-prop
qwidget.html#width-prop
qwidget.html#width-prop
qwidget.html#baseSize-prop
qwidget.html#height-prop
qwidget.html#height-prop
qwidget.html#size-prop
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop


sizePolicy	:	QSizePolicy
This	property	holds	the	default	layout	behavior	of	the	widget.

If	there	is	a	QLayout	that	manages	this	widget's	children,	the	size	policy	specified	by	that	layout	is	used.	If	there	is	no	such	QLayout,	the	result	of	this	function	is	used.

The	default	policy	is	Preferred/Preferred,	which	means	that	the	widget	can	be	freely	resized,	but	prefers	to	be	the	size	sizeHint()	returns.	Button-like	widgets	set	the	size	policy	to	specify	that	they	may	stretch	horizontally,	but	are	fixed	vertically.	The	same	applies	to	lineedit	controls	(such	as	QLineEdit,	QSpinBox	or	an	editable	QComboBox)	and	other	horizontally	orientated	widgets	(such	as	QProgressBar).	QToolButton's	are	normally	square,	so	they	allow	growth	in	both	directions.	Widgets	that	support	different	directions	(such	as	QSlider,	QScrollBar	or	QHeader)	specify	stretching	in	the	respective	direction	only.	Widgets	that	can	provide	scroll	bars	(usually	subclasses	of	QScrollArea)	tend	to	specify	that	they	can	use	additional	space,	and	that	they	can	make	do	with	less	than	sizeHint().

Access	functions:

QSizePolicy	 sizePolicy	()	const

void	 setSizePolicy	(	QSizePolicy	)

void	 setSizePolicy	(	QSizePolicy::Policy	horizontal,	QSizePolicy::Policy	vertical	)

See	also	sizeHint(),	QLayout,	QSizePolicy,	and	updateGeometry().

statusTip	:	QString
This	property	holds	the	widget's	status	tip.

By	default,	this	property	contains	an	empty	string.

Access	functions:

QString	 statusTip	()	const

void	 setStatusTip	(	const	QString	&	)

See	also	toolTip	and	whatsThis.

styleSheet	:	QString
This	property	holds	the	widget's	style	sheet.

The	style	sheet	contains	a	textual	description	of	customizations	to	the	widget's	style,	as	described	in	the	Qt	Style	Sheets	document.

Since	Qt	4.5,	Qt	style	sheets	fully	supports	Mac	OS	X.

Warning:	Qt	style	sheets	are	currently	not	supported	for	custom	QStyle	subclasses.	We	plan	to	address	this	in	some	future	release.

This	property	was	introduced	in	Qt	4.2.

Access	functions:

QString	 styleSheet	()	const

void	 setStyleSheet	(	const	QString	&	styleSheet	)

See	also	setStyle(),	QApplication::styleSheet,	and	Qt	Style	Sheets.

toolTip	:	QString
This	property	holds	the	widget's	tooltip.

Note	that	by	default	tooltips	are	only	shown	for	widgets	that	are	children	of	the	active	window.	You	can	change	this	behavior	by	setting	the	attribute	Qt::WA_AlwaysShowToolTips	on	the	window,	not	on	the	widget	with	the	tooltip.

If	you	want	to	control	a	tooltip's	behavior,	you	can	intercept	the	event()	function	and	catch	the	QEvent::ToolTip	event	(e.g.,	if	you	want	to	customize	the	area	for	which	the	tooltip	should	be	shown).

By	default,	this	property	contains	an	empty	string.

Access	functions:

QString	 toolTip	()	const

void	 setToolTip	(	const	QString	&	)

See	also	QToolTip,	statusTip,	and	whatsThis.

updatesEnabled	:	bool
This	property	holds	whether	updates	are	enabled.

An	updates	enabled	widget	receives	paint	events	and	has	a	system	background;	a	disabled	widget	does	not.	This	also	implies	that	calling	update()	and	repaint()	has	no	effect	if	updates	are	disabled.

By	default,	this	property	is	true.

setUpdatesEnabled()	is	normally	used	to	disable	updates	for	a	short	period	of	time,	for	instance	to	avoid	screen	flicker	during	large	changes.	In	Qt,	widgets	normally	do	not	generate	screen	flicker,	but	on	X11	the	server	might	erase	regions	on	the	screen	when	widgets	get	hidden	before	they	can	be	replaced	by	other	widgets.	Disabling	updates	solves	this.

Example:

	setUpdatesEnabled(false);
	bigVisualChanges();
	setUpdatesEnabled(true);

Disabling	a	widget	implicitly	disables	all	its	children.	Enabling	a	widget	enables	all	child	widgets	except	top-level	widgets	or	those	that	have	been	explicitly	disabled.	Re-enabling	updates	implicitly	calls	update()	on	the	widget.

Access	functions:

bool	 updatesEnabled	()	const

void	 setUpdatesEnabled	(	bool	enable	)

See	also	paintEvent().

visible	:	bool
This	property	holds	whether	the	widget	is	visible.

Calling	setVisible(true)	or	show()	sets	the	widget	to	visible	status	if	all	its	parent	widgets	up	to	the	window	are	visible.	If	an	ancestor	is	not	visible,	the	widget	won't	become	visible	until	all	its	ancestors	are	shown.	If	its	size	or	position	has	changed,	Qt	guarantees	that	a	widget	gets	move	and	resize	events	just	before	it	is	shown.	If	the	widget	has	not	been	resized	yet,	Qt	will	adjust	the	widget's	size	to	a	useful	default	using	adjustSize().

Calling	setVisible(false)	or	hide()	hides	a	widget	explicitly.	An	explicitly	hidden	widget	will	never	become	visible,	even	if	all	its	ancestors	become	visible,	unless	you	show	it.

A	widget	receives	show	and	hide	events	when	its	visibility	status	changes.	Between	a	hide	and	a	show	event,	there	is	no	need	to	waste	CPU	cycles	preparing	or	displaying	information	to	the	user.	A	video	application,	for	example,	might	simply	stop	generating	new	frames.

A	widget	that	happens	to	be	obscured	by	other	windows	on	the	screen	is	considered	to	be	visible.	The	same	applies	to	iconified	windows	and	windows	that	exist	on	another	virtual	desktop	(on	platforms	that	support	this	concept).	A	widget	receives	spontaneous	show	and	hide	events	when	its	mapping	status	is	changed	by	the	window	system,	e.g.	a	spontaneous	hide	event	when	the	user	minimizes	the	window,	and	a	spontaneous	show	event	when	the	window	is	restored	again.

You	almost	never	have	to	reimplement	the	setVisible()	function.	If	you	need	to	change	some	settings	before	a	widget	is	shown,	use	showEvent()	instead.	If	you	need	to	do	some	delayed	initialization	use	the	Polish	event	delivered	to	the	event()	function.

Access	functions:

bool	 isVisible	()	const

virtual	void	 setVisible	(	bool	visible	)

See	also	show(),	hide(),	isHidden(),	isVisibleTo(),	isMinimized(),	showEvent(),	and	hideEvent().

whatsThis	:	QString
This	property	holds	the	widget's	What's	This	help	text.

By	default,	this	property	contains	an	empty	string.

Access	functions:

QString	 whatsThis	()	const

void	 setWhatsThis	(	const	QString	&	)

See	also	QWhatsThis,	QWidget::toolTip,	and	QWidget::statusTip.

width	:	const	int
This	property	holds	the	width	of	the	widget	excluding	any	window	frame.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

Note:	Do	not	use	this	function	to	find	the	width	of	a	screen	on	a	multiple	screen	desktop.	Read	this	note	for	details.

By	default,	this	property	contains	a	value	that	depends	on	the	user's	platform	and	screen	geometry.

Access	functions:

int	 width	()	const

10

qsizepolicy.html
qlayout.html
qlayout.html
qwidget.html#sizeHint-prop
qlineedit.html
qspinbox.html
qcombobox.html
qprogressbar.html
qtoolbutton.html
qslider.html
qscrollbar.html
porting4.html#qheader
qscrollarea.html
qwidget.html#sizeHint-prop
qwidget.html#sizeHint-prop
qlayout.html
qsizepolicy.html
qwidget.html#updateGeometry
qstring.html
qwidget.html#toolTip-prop
qwidget.html#whatsThis-prop
qstring.html
stylesheet.html
qstyle.html
qwidget.html#setStyle
qapplication.html#styleSheet-prop
stylesheet.html
qstring.html
qt.html#WidgetAttribute-enum
qwidget.html#event
qevent.html#Type-enum
qtooltip.html
qwidget.html#statusTip-prop
qwidget.html#whatsThis-prop
qwidget.html#update
qwidget.html#repaint
qwidget.html#update
qwidget.html#paintEvent
qwidget.html#show
qwidget.html#adjustSize
qwidget.html#hide
qwidget.html#showEvent
qwidget.html#event
qwidget.html#show
qwidget.html#hide
qwidget.html#isHidden
qwidget.html#isVisibleTo
qwidget.html#minimized-prop
qwidget.html#showEvent
qwidget.html#hideEvent
qstring.html
qwhatsthis.html
qwidget.html#toolTip-prop
qwidget.html#statusTip-prop
application-windows.html#window-geometry
qdesktopwidget.html
qdesktopwidget.html#screen-geometry


See	also	geometry,	height,	and	size.

windowFilePath	:	QString
This	property	holds	the	file	path	associated	with	a	widget.

This	property	only	makes	sense	for	windows.	It	associates	a	file	path	with	a	window.	If	you	set	the	file	path,	but	have	not	set	the	window	title,	Qt	sets	the	window	title	to	contain	a	string	created	using	the	following	components.

On	Mac	OS	X:

The	file	name	of	the	specified	path,	obtained	using	QFileInfo::fileName().

On	Windows	and	X11:

The	file	name	of	the	specified	path,	obtained	using	QFileInfo::fileName().
An	optional	*	character,	if	the	windowModified	property	is	set.
The	0x2014	unicode	character,	padded	either	side	by	spaces.
The	application	name,	obtained	from	the	application's	applicationName	property.

If	the	window	title	is	set	at	any	point,	then	the	window	title	takes	precedence	and	will	be	shown	instead	of	the	file	path	string.

Additionally,	on	Mac	OS	X,	this	has	an	added	benefit	that	it	sets	the	proxy	icon	for	the	window,	assuming	that	the	file	path	exists.

If	no	file	path	is	set,	this	property	contains	an	empty	string.

By	default,	this	property	contains	an	empty	string.

This	property	was	introduced	in	Qt	4.4.

Access	functions:

QString	 windowFilePath	()	const

void	 setWindowFilePath	(	const	QString	&	filePath	)

See	also	windowTitle	and	windowIcon.

windowFlags	:	Qt::WindowFlags
Window	flags	are	a	combination	of	a	type	(e.g.	Qt::Dialog)	and	zero	or	more	hints	to	the	window	system	(e.g.	Qt::FramelessWindowHint).

If	the	widget	had	type	Qt::Widget	or	Qt::SubWindow	and	becomes	a	window	(Qt::Window,	Qt::Dialog,	etc.),	it	is	put	at	position	(0,	0)	on	the	desktop.	If	the	widget	is	a	window	and	becomes	a	Qt::Widget	or	Qt::SubWindow,	it	is	put	at	position	(0,	0)	relative	to	its	parent	widget.

Note:	This	function	calls	setParent()	when	changing	the	flags	for	a	window,	causing	the	widget	to	be	hidden.	You	must	call	show()	to	make	the	widget	visible	again..

Access	functions:

Qt::WindowFlags	 windowFlags	()	const

void	 setWindowFlags	(	Qt::WindowFlags	type	)

See	also	windowType()	and	Window	Flags	Example.

windowIcon	:	QIcon
This	property	holds	the	widget's	icon.

This	property	only	makes	sense	for	windows.	If	no	icon	has	been	set,	windowIcon()	returns	the	application	icon	(QApplication::windowIcon()).

Access	functions:

QIcon	 windowIcon	()	const

void	 setWindowIcon	(	const	QIcon	&	icon	)

See	also	windowIconText	and	windowTitle.

windowIconText	:	QString
This	property	holds	the	widget's	icon	text.

This	property	only	makes	sense	for	windows.	If	no	icon	text	has	been	set,	this	functions	returns	an	empty	string.

Access	functions:

QString	 windowIconText	()	const

void	 setWindowIconText	(	const	QString	&	)

See	also	windowIcon	and	windowTitle.

windowModality	:	Qt::WindowModality
This	property	holds	which	windows	are	blocked	by	the	modal	widget.

This	property	only	makes	sense	for	windows.	A	modal	widget	prevents	widgets	in	other	windows	from	getting	input.	The	value	of	this	property	controls	which	windows	are	blocked	when	the	widget	is	visible.	Changing	this	property	while	the	window	is	visible	has	no	effect;	you	must	hide()	the	widget	first,	then	show()	it	again.

By	default,	this	property	is	Qt::NonModal.

This	property	was	introduced	in	Qt	4.1.

Access	functions:

Qt::WindowModality	 windowModality	()	const

void	 setWindowModality	(	Qt::WindowModality	windowModality	)

See	also	isWindow(),	QWidget::modal,	and	QDialog.

windowModified	:	bool
This	property	holds	whether	the	document	shown	in	the	window	has	unsaved	changes.

A	modified	window	is	a	window	whose	content	has	changed	but	has	not	been	saved	to	disk.	This	flag	will	have	different	effects	varied	by	the	platform.	On	Mac	OS	X	the	close	button	will	have	a	modified	look;	on	other	platforms,	the	window	title	will	have	an	'*'	(asterisk).

The	window	title	must	contain	a	"[*]"	placeholder,	which	indicates	where	the	'*'	should	appear.	Normally,	it	should	appear	right	after	the	file	name	(e.g.,	"document1.txt[*]	-	Text	Editor").	If	the	window	isn't	modified,	the	placeholder	is	simply	removed.

Note	that	if	a	widget	is	set	as	modified,	all	its	ancestors	will	also	be	set	as	modified.	However,	if	you	call	setWindowModified(false)	on	a	widget,	this	will	not	propagate	to	its	parent	because	other	children	of	the	parent	might	have	been	modified.

Access	functions:

bool	 isWindowModified	()	const

void	 setWindowModified	(	bool	)

See	also	windowTitle,	Application	Example,	SDI	Example,	and	MDI	Example.

windowOpacity	:	double
This	property	holds	the	level	of	opacity	for	the	window.

The	valid	range	of	opacity	is	from	1.0	(completely	opaque)	to	0.0	(completely	transparent).

By	default	the	value	of	this	property	is	1.0.

This	feature	is	available	on	Embedded	Linux,	Mac	OS	X,	Windows,	and	X11	platforms	that	support	the	Composite	extension.

This	feature	is	not	available	on	Windows	CE.

Note	that	under	X11	you	need	to	have	a	composite	manager	running,	and	the	X11	specific	_NET_WM_WINDOW_OPACITY	atom	needs	to	be	supported	by	the	window	manager	you	are	using.

Warning:	Changing	this	property	from	opaque	to	transparent	might	issue	a	paint	event	that	needs	to	be	processed	before	the	window	is	displayed	correctly.	This	affects	mainly	the	use	of	QPixmap::grabWindow().	Also	note	that	semi-transparent	windows	update	and	resize	significantly	slower	than	opaque	windows.

Access	functions:

qreal	 windowOpacity	()	const

void	 setWindowOpacity	(	qreal	level	)

See	also	setMask().

windowTitle	:	QString

11

qwidget.html#geometry-prop
qwidget.html#height-prop
qwidget.html#size-prop
qstring.html
qfileinfo.html#fileName
qfileinfo.html#fileName
qwidget.html#windowModified-prop
qcoreapplication.html#applicationName-prop
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/XHIGWindows/chapter_17_section_3.html
qwidget.html#windowTitle-prop
qwidget.html#windowIcon-prop
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qt.html#WindowType-enum
qwidget.html#setParent
qwidget.html#show
qwidget.html#windowType
widgets-windowflags.html
qicon.html
qapplication.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#windowTitle-prop
qstring.html
qwidget.html#windowIcon-prop
qwidget.html#windowTitle-prop
qt.html#WindowModality-enum
qwidget.html#hide
qwidget.html#show
qt.html#WindowModality-enum
qwidget.html#isWindow
qwidget.html#modal-prop
qdialog.html
qwidget.html#windowTitle-prop
mainwindows-application.html
mainwindows-sdi.html
mainwindows-mdi.html
qpixmap.html#grabWindow
qwidget.html#setMask
qstring.html


This	property	holds	the	window	title	(caption).

This	property	only	makes	sense	for	top-level	widgets,	such	as	windows	and	dialogs.	If	no	caption	has	been	set,	the	title	is	based	of	the	windowFilePath.	If	neither	of	these	is	set,	then	the	title	is	an	empty	string.

If	you	use	the	windowModified	mechanism,	the	window	title	must	contain	a	"[*]"	placeholder,	which	indicates	where	the	'*'	should	appear.	Normally,	it	should	appear	right	after	the	file	name	(e.g.,	"document1.txt[*]	-	Text	Editor").	If	the	windowModified	property	is	false	(the	default),	the	placeholder	is	simply	removed.

Access	functions:

QString	 windowTitle	()	const

void	 setWindowTitle	(	const	QString	&	)

See	also	windowIcon,	windowIconText,	windowModified,	and	windowFilePath.

x	:	const	int
This	property	holds	the	x	coordinate	of	the	widget	relative	to	its	parent	including	any	window	frame.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

By	default,	this	property	has	a	value	of	0.

Access	functions:

int	 x	()	const

See	also	frameGeometry,	y,	and	pos.

y	:	const	int
This	property	holds	the	y	coordinate	of	the	widget	relative	to	its	parent	and	including	any	window	frame.

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

By	default,	this	property	has	a	value	of	0.

Access	functions:

int	 y	()	const

See	also	frameGeometry,	x,	and	pos.

Member	Function	Documentation

QWidget::QWidget	(	QWidget	*	parent	=	0,	Qt::WindowFlags	f	=	0	)
Constructs	a	widget	which	is	a	child	of	parent,	with	widget	flags	set	to	f.

If	parent	is	0,	the	new	widget	becomes	a	window.	If	parent	is	another	widget,	this	widget	becomes	a	child	window	inside	parent.	The	new	widget	is	deleted	when	its	parent	is	deleted.

The	widget	flags	argument,	f,	is	normally	0,	but	it	can	be	set	to	customize	the	frame	of	a	window	(i.e.	parent	must	be	0).	To	customize	the	frame,	use	a	value	composed	from	the	bitwise	OR	of	any	of	the	window	flags.

If	you	add	a	child	widget	to	an	already	visible	widget	you	must	explicitly	show	the	child	to	make	it	visible.

Note	that	the	X11	version	of	Qt	may	not	be	able	to	deliver	all	combinations	of	style	flags	on	all	systems.	This	is	because	on	X11,	Qt	can	only	ask	the	window	manager,	and	the	window	manager	can	override	the	application's	settings.	On	Windows,	Qt	can	set	whatever	flags	you	want.

See	also	windowFlags.

QWidget::~QWidget	()
Destroys	the	widget.

All	this	widget's	children	are	deleted	first.	The	application	exits	if	this	widget	is	the	main	widget.

void	QWidget::actionEvent	(	QActionEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	with	the	given	event	whenever	the	widget's	actions	are	changed.

See	also	addAction(),	insertAction(),	removeAction(),	actions(),	and	QActionEvent.

QList<QAction	*>	QWidget::actions	()	const
Returns	the	(possibly	empty)	list	of	this	widget's	actions.

See	also	contextMenuPolicy,	insertAction(),	and	removeAction().

void	QWidget::activateWindow	()
Sets	the	top-level	widget	containing	this	widget	to	be	the	active	window.

An	active	window	is	a	visible	top-level	window	that	has	the	keyboard	input	focus.

This	function	performs	the	same	operation	as	clicking	the	mouse	on	the	title	bar	of	a	top-level	window.	On	X11,	the	result	depends	on	the	Window	Manager.	If	you	want	to	ensure	that	the	window	is	stacked	on	top	as	well	you	should	also	call	raise().	Note	that	the	window	must	be	visible,	otherwise	activateWindow()	has	no	effect.

On	Windows,	if	you	are	calling	this	when	the	application	is	not	currently	the	active	one	then	it	will	not	make	it	the	active	window.	It	will	change	the	color	of	the	taskbar	entry	to	indicate	that	the	window	has	changed	in	some	way.	This	is	because	Microsoft	does	not	allow	an	application	to	interrupt	what	the	user	is	currently	doing	in	another	application.

See	also	isActiveWindow(),	window(),	and	show().

void	QWidget::addAction	(	QAction	*	action	)
Appends	the	action	action	to	this	widget's	list	of	actions.

All	QWidgets	have	a	list	of	QActions,	however	they	can	be	represented	graphically	in	many	different	ways.	The	default	use	of	the	QAction	list	(as	returned	by	actions())	is	to	create	a	context	QMenu.

A	QWidget	should	only	have	one	of	each	action	and	adding	an	action	it	already	has	will	not	cause	the	same	action	to	be	in	the	widget	twice.

The	ownership	of	action	is	not	transferred	to	this	QWidget.

See	also	removeAction(),	insertAction(),	actions(),	and	QMenu.

void	QWidget::addActions	(	QList<QAction	*>	actions	)
Appends	the	actions	actions	to	this	widget's	list	of	actions.

See	also	removeAction(),	QMenu,	and	addAction().

void	QWidget::adjustSize	()
Adjusts	the	size	of	the	widget	to	fit	its	contents.

This	function	uses	sizeHint()	if	it	is	valid,	i.e.,	the	size	hint's	width	and	height	are	>=	0.	Otherwise,	it	sets	the	size	to	the	children	rectangle	that	covers	all	child	widgets	(the	union	of	all	child	widget	rectangles).

For	windows,	the	screen	size	is	also	taken	into	account.	If	the	sizeHint()	is	less	than	(200,	100)	and	the	size	policy	is	expanding,	the	window	will	be	at	least	(200,	100).	The	maximum	size	of	a	window	is	2/3	of	the	screen's	width	and	height.

See	also	sizeHint()	and	childrenRect().

12

qwidget.html#windowFilePath-prop
qwidget.html#windowModified-prop
qwidget.html#windowModified-prop
qwidget.html#windowIcon-prop
qwidget.html#windowIconText-prop
qwidget.html#windowModified-prop
qwidget.html#windowFilePath-prop
application-windows.html#window-geometry
qwidget.html#frameGeometry-prop
qwidget.html#y-prop
qwidget.html#pos-prop
application-windows.html#window-geometry
qwidget.html#frameGeometry-prop
qwidget.html#x-prop
qwidget.html#pos-prop
qt.html#WindowType-enum
qt.html#WindowType-enum
qwidget.html#windowFlags-prop
qactionevent.html
qwidget.html#addAction
qwidget.html#insertAction
qwidget.html#removeAction
qwidget.html#actions
qactionevent.html
qlist.html
qaction.html
qwidget.html#contextMenuPolicy-prop
qwidget.html#insertAction
qwidget.html#removeAction
qwidget.html#raise
qwidget.html#isActiveWindow-prop
qwidget.html#window
qwidget.html#show
qaction.html
qaction.html
qaction.html
qwidget.html#actions
qmenu.html
qwidget.html
qwidget.html
qwidget.html#removeAction
qwidget.html#insertAction
qwidget.html#actions
qmenu.html
qlist.html
qaction.html
qwidget.html#removeAction
qmenu.html
qwidget.html#addAction
qwidget.html#sizeHint-prop
qwidget.html#sizeHint-prop
qsizepolicy.html#Policy-enum
qwidget.html#sizeHint-prop
qwidget.html#childrenRect-prop


QPalette::ColorRole	QWidget::backgroundRole	()	const
Returns	the	background	role	of	the	widget.

The	background	role	defines	the	brush	from	the	widget's	palette	that	is	used	to	render	the	background.

If	no	explicit	background	role	is	set,	the	widget	inherts	its	parent	widget's	background	role.

See	also	setBackgroundRole()	and	foregroundRole().

void	QWidget::changeEvent	(	QEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	to	handle	state	changes.

The	state	being	changed	in	this	event	can	be	retrieved	through	the	event	supplied.

Change	events	include:	QEvent::ToolBarChange,	QEvent::ActivationChange,	QEvent::EnabledChange,	QEvent::FontChange,	QEvent::StyleChange,	QEvent::PaletteChange,	QEvent::WindowTitleChange,	QEvent::IconTextChange,	QEvent::ModifiedChange,	QEvent::MouseTrackingChange,	QEvent::ParentChange,	QEvent::WindowStateChange,	QEvent::LanguageChange,	QEvent::LocaleChange,	QEvent::LayoutDirectionChange.

QWidget	*	QWidget::childAt	(	int	x,	int	y	)	const
Returns	the	visible	child	widget	at	the	position	(x,	y)	in	the	widget's	coordinate	system.	If	there	is	no	visible	child	widget	at	the	specified	position,	the	function	returns	0.

QWidget	*	QWidget::childAt	(	const	QPoint	&	p	)	const
This	is	an	overloaded	function.

Returns	the	visible	child	widget	at	point	p	in	the	widget's	own	coordinate	system.

void	QWidget::clearFocus	()
Takes	keyboard	input	focus	from	the	widget.

If	the	widget	has	active	focus,	a	focus	out	event	is	sent	to	this	widget	to	tell	it	that	it	is	about	to	lose	the	focus.

This	widget	must	enable	focus	setting	in	order	to	get	the	keyboard	input	focus,	i.e.	it	must	call	setFocusPolicy().

See	also	hasFocus(),	setFocus(),	focusInEvent(),	focusOutEvent(),	setFocusPolicy(),	and	QApplication::focusWidget().

void	QWidget::clearMask	()
Removes	any	mask	set	by	setMask().

See	also	setMask().

bool	QWidget::close	()	[slot]
Closes	this	widget.	Returns	true	if	the	widget	was	closed;	otherwise	returns	false.

First	it	sends	the	widget	a	QCloseEvent.	The	widget	is	hidden	if	it	accepts	the	close	event.	If	it	ignores	the	event,	nothing	happens.	The	default	implementation	of	QWidget::closeEvent()	accepts	the	close	event.

If	the	widget	has	the	Qt::WA_DeleteOnClose	flag,	the	widget	is	also	deleted.	A	close	events	is	delivered	to	the	widget	no	matter	if	the	widget	is	visible	or	not.

The	QApplication::lastWindowClosed()	signal	is	emitted	when	the	last	visible	primary	window	(i.e.	window	with	no	parent)	with	the	Qt::WA_QuitOnClose	attribute	set	is	closed.	By	default	this	attribute	is	set	for	all	widgets	except	transient	windows	such	as	splash	screens,	tool	windows,	and	popup	menus.

void	QWidget::closeEvent	(	QCloseEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	with	the	given	event	when	Qt	receives	a	window	close	request	for	a	top-level	widget	from	the	window	system.

By	default,	the	event	is	accepted	and	the	widget	is	closed.	You	can	reimplement	this	function	to	change	the	way	the	widget	responds	to	window	close	requests.	For	example,	you	can	prevent	the	window	from	closing	by	calling	ignore()	on	all	events.

Main	window	applications	typically	use	reimplementations	of	this	function	to	check	whether	the	user's	work	has	been	saved	and	ask	for	permission	before	closing.	For	example,	the	Application	Example	uses	a	helper	function	to	determine	whether	or	not	to	close	the	window:

	void	MainWindow::closeEvent(QCloseEvent	*event)
	{
					if	(maybeSave())	{
									writeSettings();
									event->accept();
					}	else	{
									event->ignore();
					}
	}

See	also	event(),	hide(),	close(),	QCloseEvent,	and	Application	Example.

QMargins	QWidget::contentsMargins	()	const
The	contentsMargins	function	returns	the	widget's	contents	margins.

This	function	was	introduced	in	Qt	4.6.

See	also	getContentsMargins(),	setContentsMargins(),	and	contentsRect().

QRect	QWidget::contentsRect	()	const
Returns	the	area	inside	the	widget's	margins.

See	also	setContentsMargins()	and	getContentsMargins().

void	QWidget::contextMenuEvent	(	QContextMenuEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	widget	context	menu	events.

The	handler	is	called	when	the	widget's	contextMenuPolicy	is	Qt::DefaultContextMenu.

The	default	implementation	ignores	the	context	event.	See	the	QContextMenuEvent	documentation	for	more	details.

See	also	event(),	QContextMenuEvent,	and	customContextMenuRequested().

void	QWidget::create	(	WId	window	=	0,	bool	initializeWindow	=	true,	bool	destroyOldWindow	=
true	)	[protected]
Creates	a	new	widget	window	if	window	is	0,	otherwise	sets	the	widget's	window	to	window.

Initializes	the	window	(sets	the	geometry	etc.)	if	initializeWindow	is	true.	If	initializeWindow	is	false,	no	initialization	is	performed.	This	parameter	only	makes	sense	if	window	is	a	valid	window.

Destroys	the	old	window	if	destroyOldWindow	is	true.	If	destroyOldWindow	is	false,	you	are	responsible	for	destroying	the	window	yourself	(using	platform	native	code).

The	QWidget	constructor	calls	create(0,true,true)	to	create	a	window	for	this	widget.

void	QWidget::customContextMenuRequested	(	const	QPoint	&	pos	)	[signal]
This	signal	is	emitted	when	the	widget's	contextMenuPolicy	is	Qt::CustomContextMenu,	and	the	user	has	requested	a	context	menu	on	the	widget.	The	position	pos	is	the	position	of	the	context	menu	event	that	the	widget	receives.	Normally	this	is	in	widget	coordinates.	The	exception	to	this	rule	is	QAbstractScrollArea	and	its	subclasses	that	map	the	context	menu	event	to	coordinates	of	the	viewport()	.

See	also	mapToGlobal(),	QMenu,	and	contextMenuPolicy.

13

qpalette.html#ColorRole-enum
qwidget.html#palette-prop
qwidget.html#setBackgroundRole
qwidget.html#foregroundRole
qevent.html
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qevent.html#Type-enum
qpoint.html
qwidget.html#focusOutEvent
qwidget.html#focusPolicy-prop
qwidget.html#focus-prop
qwidget.html#setFocus
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#focusPolicy-prop
qapplication.html#focusWidget
qwidget.html#setMask
qwidget.html#setMask
qcloseevent.html
qwidget.html#hide
qevent.html#accept
qevent.html#ignore
qwidget.html#closeEvent
qt.html#WidgetAttribute-enum
qapplication.html#lastWindowClosed
qt.html#WidgetAttribute-enum
qcloseevent.html
qevent.html#ignore
mainwindows-application.html
qcloseevent.html
qwidget.html#event
qwidget.html#hide
qwidget.html#close
qcloseevent.html
mainwindows-application.html
qmargins.html
qwidget.html#getContentsMargins
qwidget.html#setContentsMargins
qwidget.html#contentsRect
qrect.html
qwidget.html#setContentsMargins
qwidget.html#getContentsMargins
qcontextmenuevent.html
qwidget.html#contextMenuPolicy-prop
qt.html#ContextMenuPolicy-enum
qcontextmenuevent.html
qwidget.html#event
qcontextmenuevent.html
qwidget.html#customContextMenuRequested
qwidget.html#WId-typedef
qwidget.html
qpoint.html
qwidget.html#contextMenuPolicy-prop
qt.html#ContextMenuPolicy-enum
qabstractscrollarea.html
qabstractscrollarea.html#viewport
qwidget.html#mapToGlobal
qmenu.html
qwidget.html#contextMenuPolicy-prop


void	QWidget::destroy	(	bool	destroyWindow	=	true,	bool	destroySubWindows	=	true	)
[protected]
Frees	up	window	system	resources.	Destroys	the	widget	window	if	destroyWindow	is	true.

destroy()	calls	itself	recursively	for	all	the	child	widgets,	passing	destroySubWindows	for	the	destroyWindow	parameter.	To	have	more	control	over	destruction	of	subwidgets,	destroy	subwidgets	selectively	first.

This	function	is	usually	called	from	the	QWidget	destructor.

void	QWidget::dragEnterEvent	(	QDragEnterEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	when	a	drag	is	in	progress	and	the	mouse	enters	this	widget.	The	event	is	passed	in	the	event	parameter.

If	the	event	is	ignored,	the	widget	won't	receive	any	drag	move	events.

See	the	Drag-and-drop	documentation	for	an	overview	of	how	to	provide	drag-and-drop	in	your	application.

See	also	QDrag	and	QDragEnterEvent.

void	QWidget::dragLeaveEvent	(	QDragLeaveEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	when	a	drag	is	in	progress	and	the	mouse	leaves	this	widget.	The	event	is	passed	in	the	event	parameter.

See	the	Drag-and-drop	documentation	for	an	overview	of	how	to	provide	drag-and-drop	in	your	application.

See	also	QDrag	and	QDragLeaveEvent.

void	QWidget::dragMoveEvent	(	QDragMoveEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	if	a	drag	is	in	progress,	and	when	any	of	the	following	conditions	occur:	the	cursor	enters	this	widget,	the	cursor	moves	within	this	widget,	or	a	modifier	key	is	pressed	on	the	keyboard	while	this	widget	has	the	focus.	The	event	is	passed	in	the	event	parameter.

See	the	Drag-and-drop	documentation	for	an	overview	of	how	to	provide	drag-and-drop	in	your	application.

See	also	QDrag	and	QDragMoveEvent.

void	QWidget::dropEvent	(	QDropEvent	*	event	)	[virtual	protected]
This	event	handler	is	called	when	the	drag	is	dropped	on	this	widget.	The	event	is	passed	in	the	event	parameter.

See	the	Drag-and-drop	documentation	for	an	overview	of	how	to	provide	drag-and-drop	in	your	application.

See	also	QDrag	and	QDropEvent.

WId	QWidget::effectiveWinId	()	const
Returns	the	effective	window	system	identifier	of	the	widget,	i.e.	the	native	parent's	window	system	identifier.

If	the	widget	is	native,	this	function	returns	the	native	widget	ID.	Otherwise,	the	window	ID	of	the	first	native	parent	widget,	i.e.,	the	top-level	widget	that	contains	this	widget,	is	returned.

Note:	We	recommend	that	you	do	not	store	this	value	as	it	is	likely	to	change	at	run-time.

This	function	was	introduced	in	Qt	4.4.

See	also	nativeParentWidget().

void	QWidget::ensurePolished	()	const
Ensures	that	the	widget	has	been	polished	by	QStyle	(i.e.,	has	a	proper	font	and	palette).

QWidget	calls	this	function	after	it	has	been	fully	constructed	but	before	it	is	shown	the	very	first	time.	You	can	call	this	function	if	you	want	to	ensure	that	the	widget	is	polished	before	doing	an	operation,	e.g.,	the	correct	font	size	might	be	needed	in	the	widget's	sizeHint()	reimplementation.	Note	that	this	function	is	called	from	the	default	implementation	of	sizeHint().

Polishing	is	useful	for	final	initialization	that	must	happen	after	all	constructors	(from	base	classes	as	well	as	from	subclasses)	have	been	called.

If	you	need	to	change	some	settings	when	a	widget	is	polished,	reimplement	event()	and	handle	the	QEvent::Polish	event	type.

Note:	The	function	is	declared	const	so	that	it	can	be	called	from	other	const	functions	(e.g.,	sizeHint()).

See	also	event().

void	QWidget::enterEvent	(	QEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	enter	events	which	are	passed	in	the	event	parameter.

An	event	is	sent	to	the	widget	when	the	mouse	cursor	enters	the	widget.

See	also	leaveEvent(),	mouseMoveEvent(),	and	event().

bool	QWidget::event	(	QEvent	*	event	)	[virtual	protected]
Reimplemented	from	QObject::event().

This	is	the	main	event	handler;	it	handles	event	event.	You	can	reimplement	this	function	in	a	subclass,	but	we	recommend	using	one	of	the	specialized	event	handlers	instead.

Key	press	and	release	events	are	treated	differently	from	other	events.	event()	checks	for	Tab	and	Shift+Tab	and	tries	to	move	the	focus	appropriately.	If	there	is	no	widget	to	move	the	focus	to	(or	the	key	press	is	not	Tab	or	Shift+Tab),	event()	calls	keyPressEvent().

Mouse	and	tablet	event	handling	is	also	slightly	special:	only	when	the	widget	is	enabled,	event()	will	call	the	specialized	handlers	such	as	mousePressEvent();	otherwise	it	will	discard	the	event.

This	function	returns	true	if	the	event	was	recognized,	otherwise	it	returns	false.	If	the	recognized	event	was	accepted	(see	QEvent::accepted),	any	further	processing	such	as	event	propagation	to	the	parent	widget	stops.

See	also	closeEvent(),	focusInEvent(),	focusOutEvent(),	enterEvent(),	keyPressEvent(),	keyReleaseEvent(),	leaveEvent(),	mouseDoubleClickEvent(),	mouseMoveEvent(),	mousePressEvent(),	mouseReleaseEvent(),	moveEvent(),	paintEvent(),	resizeEvent(),	QObject::event(),	and	QObject::timerEvent().

QWidget	*	QWidget::find	(	WId	id	)	[static]
Returns	a	pointer	to	the	widget	with	window	identifer/handle	id.

The	window	identifier	type	depends	on	the	underlying	window	system,	see	qwindowdefs.h	for	the	actual	definition.	If	there	is	no	widget	with	this	identifier,	0	is	returned.

void	QWidget::focusInEvent	(	QFocusEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	keyboard	focus	events	(focus	received)	for	the	widget.	The	event	is	passed	in	the	event	parameter

A	widget	normally	must	setFocusPolicy()	to	something	other	than	Qt::NoFocus	in	order	to	receive	focus	events.	(Note	that	the	application	programmer	can	call	setFocus()	on	any	widget,	even	those	that	do	not	normally	accept	focus.)

The	default	implementation	updates	the	widget	(except	for	windows	that	do	not	specify	a	focusPolicy()).

See	also	focusOutEvent(),	setFocusPolicy(),	keyPressEvent(),	keyReleaseEvent(),	event(),	and	QFocusEvent.

bool	QWidget::focusNextChild	()	[protected]
Finds	a	new	widget	to	give	the	keyboard	focus	to,	as	appropriate	for	Tab,	and	returns	true	if	it	can	find	a	new	widget,	or	false	if	it	can't.

14

qwidget.html
qdragenterevent.html
qwidget.html#dragMoveEvent
dnd.html
qdrag.html
qdragenterevent.html
qdragleaveevent.html
dnd.html
qdrag.html
qdragleaveevent.html
qdragmoveevent.html
dnd.html
qdrag.html
qdragmoveevent.html
qdropevent.html
dnd.html
qdrag.html
qdropevent.html
qwidget.html#WId-typedef
qwidget.html#nativeParentWidget
qstyle.html
qwidget.html
qwidget.html#sizeHint-prop
qwidget.html#sizeHint-prop
qwidget.html#event
qevent.html#Type-enum
qwidget.html#sizeHint-prop
qwidget.html#event
qevent.html
qwidget.html#leaveEvent
qwidget.html#mouseMoveEvent
qwidget.html#event
qevent.html
qobject.html#event
qwidget.html#keyPressEvent
qwidget.html#enabled-prop
qwidget.html#mousePressEvent
qevent.html#accepted-prop
qwidget.html#closeEvent
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#enterEvent
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#leaveEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#mouseMoveEvent
qwidget.html#mousePressEvent
qwidget.html#mouseReleaseEvent
qwidget.html#moveEvent
qwidget.html#paintEvent
qwidget.html#resizeEvent
qobject.html#event
qobject.html#timerEvent
qwidget.html#WId-typedef
qfocusevent.html
qwidget.html#focusPolicy-prop
qt.html#FocusPolicy-enum
qwidget.html#setFocus
qwidget.html#focusPolicy-prop
qwidget.html#focusOutEvent
qwidget.html#focusPolicy-prop
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#event
qfocusevent.html


See	also	focusPreviousChild().

bool	QWidget::focusNextPrevChild	(	bool	next	)	[virtual	protected]
Finds	a	new	widget	to	give	the	keyboard	focus	to,	as	appropriate	for	Tab	and	Shift+Tab,	and	returns	true	if	it	can	find	a	new	widget,	or	false	if	it	can't.

If	next	is	true,	this	function	searches	forward,	if	next	is	false,	it	searches	backward.

Sometimes,	you	will	want	to	reimplement	this	function.	For	example,	a	web	browser	might	reimplement	it	to	move	its	"current	active	link"	forward	or	backward,	and	call	focusNextPrevChild()	only	when	it	reaches	the	last	or	first	link	on	the	"page".

Child	widgets	call	focusNextPrevChild()	on	their	parent	widgets,	but	only	the	window	that	contains	the	child	widgets	decides	where	to	redirect	focus.	By	reimplementing	this	function	for	an	object,	you	thus	gain	control	of	focus	traversal	for	all	child	widgets.

See	also	focusNextChild()	and	focusPreviousChild().

void	QWidget::focusOutEvent	(	QFocusEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	keyboard	focus	events	(focus	lost)	for	the	widget.	The	events	is	passed	in	the	event	parameter.

A	widget	normally	must	setFocusPolicy()	to	something	other	than	Qt::NoFocus	in	order	to	receive	focus	events.	(Note	that	the	application	programmer	can	call	setFocus()	on	any	widget,	even	those	that	do	not	normally	accept	focus.)

The	default	implementation	updates	the	widget	(except	for	windows	that	do	not	specify	a	focusPolicy()).

See	also	focusInEvent(),	setFocusPolicy(),	keyPressEvent(),	keyReleaseEvent(),	event(),	and	QFocusEvent.

bool	QWidget::focusPreviousChild	()	[protected]
Finds	a	new	widget	to	give	the	keyboard	focus	to,	as	appropriate	for	Shift+Tab,	and	returns	true	if	it	can	find	a	new	widget,	or	false	if	it	can't.

See	also	focusNextChild().

QWidget	*	QWidget::focusProxy	()	const
Returns	the	focus	proxy,	or	0	if	there	is	no	focus	proxy.

See	also	setFocusProxy().

QWidget	*	QWidget::focusWidget	()	const
Returns	the	last	child	of	this	widget	that	setFocus	had	been	called	on.	For	top	level	widgets	this	is	the	widget	that	will	get	focus	in	case	this	window	gets	activated

This	is	not	the	same	as	QApplication::focusWidget(),	which	returns	the	focus	widget	in	the	currently	active	window.

QFontInfo	QWidget::fontInfo	()	const
Returns	the	font	info	for	the	widget's	current	font.	Equivalent	to	QFontInto(widget->font()).

See	also	font(),	fontMetrics(),	and	setFont().

QFontMetrics	QWidget::fontMetrics	()	const
Returns	the	font	metrics	for	the	widget's	current	font.	Equivalent	to	QFontMetrics(widget->font()).

See	also	font(),	fontInfo(),	and	setFont().

QPalette::ColorRole	QWidget::foregroundRole	()	const
Returns	the	foreground	role.

The	foreground	role	defines	the	color	from	the	widget's	palette	that	is	used	to	draw	the	foreground.

If	no	explicit	foreground	role	is	set,	the	function	returns	a	role	that	contrasts	with	the	background	role.

See	also	setForegroundRole()	and	backgroundRole().

void	QWidget::getContentsMargins	(	int	*	left,	int	*	top,	int	*	right,	int	*	bottom	)	const
Returns	the	widget's	contents	margins	for	left,	top,	right,	and	bottom.

See	also	setContentsMargins()	and	contentsRect().

HDC	QWidget::getDC	()	const	[virtual]
Returns	the	window	system	handle	of	the	widget,	for	low-level	access.	Using	this	function	is	not	portable.

An	HDC	acquired	with	getDC()	has	to	be	released	with	releaseDC().

Warning:	Using	this	function	is	not	portable.

void	QWidget::grabGesture	(	Qt::GestureType	gesture,	Qt::GestureFlags	flags	=
Qt::GestureFlags()	)
Subscribes	the	widget	to	a	given	gesture	with	specific	flags.

This	function	was	introduced	in	Qt	4.6.

See	also	ungrabGesture()	and	QGestureEvent.

void	QWidget::grabKeyboard	()
Grabs	the	keyboard	input.

This	widget	receives	all	keyboard	events	until	releaseKeyboard()	is	called;	other	widgets	get	no	keyboard	events	at	all.	Mouse	events	are	not	affected.	Use	grabMouse()	if	you	want	to	grab	that.

The	focus	widget	is	not	affected,	except	that	it	doesn't	receive	any	keyboard	events.	setFocus()	moves	the	focus	as	usual,	but	the	new	focus	widget	receives	keyboard	events	only	after	releaseKeyboard()	is	called.

If	a	different	widget	is	currently	grabbing	keyboard	input,	that	widget's	grab	is	released	first.

See	also	releaseKeyboard(),	grabMouse(),	releaseMouse(),	and	focusWidget().

void	QWidget::grabMouse	()
Grabs	the	mouse	input.

This	widget	receives	all	mouse	events	until	releaseMouse()	is	called;	other	widgets	get	no	mouse	events	at	all.	Keyboard	events	are	not	affected.	Use	grabKeyboard()	if	you	want	to	grab	that.

Warning:	Bugs	in	mouse-grabbing	applications	very	often	lock	the	terminal.	Use	this	function	with	extreme	caution,	and	consider	using	the	-nograb	command	line	option	while	debugging.

15

qwidget.html#focusPreviousChild
qwidget.html#focusNextChild
qwidget.html#focusPreviousChild
qfocusevent.html
qwidget.html#focusPolicy-prop
qt.html#FocusPolicy-enum
qwidget.html#setFocus
qwidget.html#focusPolicy-prop
qwidget.html#focusInEvent
qwidget.html#focusPolicy-prop
qwidget.html#keyPressEvent
qwidget.html#keyReleaseEvent
qwidget.html#event
qfocusevent.html
qwidget.html#focusNextChild
qwidget.html#setFocusProxy
qapplication.html#focusWidget
qfontinfo.html
qwidget.html#font-prop
qwidget.html#font-prop
qwidget.html#fontMetrics
qwidget.html#font-prop
qfontmetrics.html
qfontmetrics.html
qwidget.html#font-prop
qwidget.html#font-prop
qwidget.html#fontInfo
qwidget.html#font-prop
qpalette.html#ColorRole-enum
qwidget.html#palette-prop
qwidget.html#setForegroundRole
qwidget.html#backgroundRole
qwidget.html#setContentsMargins
qwidget.html#contentsRect
qwidget.html#releaseDC
qt.html#GestureType-enum
qt.html#GestureFlag-enum
qwidget.html#ungrabGesture
qgestureevent.html
qwidget.html#releaseKeyboard
qwidget.html#grabMouse
qwidget.html#setFocus
qwidget.html#releaseKeyboard
qwidget.html#releaseKeyboard
qwidget.html#grabMouse
qwidget.html#releaseMouse
qwidget.html#focusWidget
qwidget.html#releaseMouse
qwidget.html#grabKeyboard


It	is	almost	never	necessary	to	grab	the	mouse	when	using	Qt,	as	Qt	grabs	and	releases	it	sensibly.	In	particular,	Qt	grabs	the	mouse	when	a	mouse	button	is	pressed	and	keeps	it	until	the	last	button	is	released.

Note:	Only	visible	widgets	can	grab	mouse	input.	If	isVisible()	returns	false	for	a	widget,	that	widget	cannot	call	grabMouse().

Note:	(Mac	OS	X	developers)	For	Cocoa,	calling	grabMouse()	on	a	widget	only	works	when	the	mouse	is	inside	the	frame	of	that	widget.	For	Carbon,	it	works	outside	the	widget's	frame	as	well,	like	for	Windows	and	X11.

See	also	releaseMouse(),	grabKeyboard(),	and	releaseKeyboard().

void	QWidget::grabMouse	(	const	QCursor	&	cursor	)
This	function	overloads	grabMouse().

Grabs	the	mouse	input	and	changes	the	cursor	shape.

The	cursor	will	assume	shape	cursor	(for	as	long	as	the	mouse	focus	is	grabbed)	and	this	widget	will	be	the	only	one	to	receive	mouse	events	until	releaseMouse()	is	called().

Warning:	Grabbing	the	mouse	might	lock	the	terminal.

Note:	(Mac	OS	X	developers)	See	the	note	in	QWidget::grabMouse().

See	also	releaseMouse(),	grabKeyboard(),	releaseKeyboard(),	and	setCursor().

int	QWidget::grabShortcut	(	const	QKeySequence	&	key,	Qt::ShortcutContext	context	=
Qt::WindowShortcut	)
Adds	a	shortcut	to	Qt's	shortcut	system	that	watches	for	the	given	key	sequence	in	the	given	context.	If	the	context	is	Qt::ApplicationShortcut,	the	shortcut	applies	to	the	application	as	a	whole.	Otherwise,	it	is	either	local	to	this	widget,	Qt::WidgetShortcut,	or	to	the	window	itself,	Qt::WindowShortcut.

If	the	same	key	sequence	has	been	grabbed	by	several	widgets,	when	the	key	sequence	occurs	a	QEvent::Shortcut	event	is	sent	to	all	the	widgets	to	which	it	applies	in	a	non-deterministic	order,	but	with	the	``ambiguous''	flag	set	to	true.

Warning:	You	should	not	normally	need	to	use	this	function;	instead	create	QActions	with	the	shortcut	key	sequences	you	require	(if	you	also	want	equivalent	menu	options	and	toolbar	buttons),	or	create	QShortcuts	if	you	just	need	key	sequences.	Both	QAction	and	QShortcut	handle	all	the	event	filtering	for	you,	and	provide	signals	which	are	triggered	when	the	user	triggers	the	key	sequence,	so	are	much	easier	to	use	than	this	low-level	function.

See	also	releaseShortcut()	and	setShortcutEnabled().

QGraphicsEffect	*	QWidget::graphicsEffect	()	const
The	graphicsEffect	function	returns	a	pointer	to	the	widget's	graphics	effect.

If	the	widget	has	no	graphics	effect,	0	is	returned.

This	function	was	introduced	in	Qt	4.6.

See	also	setGraphicsEffect().

QGraphicsProxyWidget	*	QWidget::graphicsProxyWidget	()	const
Returns	the	proxy	widget	for	the	corresponding	embedded	widget	in	a	graphics	view;	otherwise	returns	0.

This	function	was	introduced	in	Qt	4.5.

See	also	QGraphicsProxyWidget::createProxyForChildWidget()	and	QGraphicsScene::addWidget().

bool	QWidget::hasEditFocus	()	const
Returns	true	if	this	widget	currently	has	edit	focus;	otherwise	false.

This	feature	is	only	available	in	Qt	for	Embedded	Linux.

See	also	setEditFocus()	and	QApplication::keypadNavigationEnabled().

int	QWidget::heightForWidth	(	int	w	)	const	[virtual]
Returns	the	preferred	height	for	this	widget,	given	the	width	w.

If	this	widget	has	a	layout,	the	default	implementation	returns	the	layout's	preferred	height.	if	there	is	no	layout,	the	default	implementation	returns	-1	indicating	that	the	preferred	height	does	not	depend	on	the	width.

void	QWidget::hide	()	[slot]
Hides	the	widget.	This	function	is	equivalent	to	setVisible(false).

Note:	If	you	are	working	with	QDialog	or	its	subclasses	and	you	invoke	the	show()	function	after	this	function,	the	dialog	will	be	displayed	in	its	original	position.

See	also	hideEvent(),	isHidden(),	show(),	setVisible(),	isVisible(),	and	close().

void	QWidget::hideEvent	(	QHideEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	hide	events.	The	event	is	passed	in	the	event	parameter.

Hide	events	are	sent	to	widgets	immediately	after	they	have	been	hidden.

Note:	A	widget	receives	spontaneous	show	and	hide	events	when	its	mapping	status	is	changed	by	the	window	system,	e.g.	a	spontaneous	hide	event	when	the	user	minimizes	the	window,	and	a	spontaneous	show	event	when	the	window	is	restored	again.	After	receiving	a	spontaneous	hide	event,	a	widget	is	still	considered	visible	in	the	sense	of	isVisible().

See	also	visible,	event(),	and	QHideEvent.

QInputContext	*	QWidget::inputContext	()
This	function	returns	the	QInputContext	for	this	widget.	By	default	the	input	context	is	inherited	from	the	widgets	parent.	For	toplevels	it	is	inherited	from	QApplication.

You	can	override	this	and	set	a	special	input	context	for	this	widget	by	using	the	setInputContext()	method.

See	also	setInputContext().

void	QWidget::inputMethodEvent	(	QInputMethodEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	Input	Method	composition	events.	This	handler	is	called	when	the	state	of	the	input	method	changes.

Note	that	when	creating	custom	text	editing	widgets,	the	Qt::WA_InputMethodEnabled	window	attribute	must	be	set	explicitly	(using	the	setAttribute()	function)	in	order	to	receive	input	method	events.

The	default	implementation	calls	event->ignore(),	which	rejects	the	Input	Method	event.	See	the	QInputMethodEvent	documentation	for	more	details.

See	also	event()	and	QInputMethodEvent.

QVariant	QWidget::inputMethodQuery	(	Qt::InputMethodQuery	query	)	const	[virtual]
This	method	is	only	relevant	for	input	widgets.	It	is	used	by	the	input	method	to	query	a	set	of	properties	of	the	widget	to	be	able	to	support	complex	input	method	operations	as	support	for	surrounding	text	and	reconversions.

query	specifies	which	property	is	queried.

See	also	inputMethodEvent(),	QInputMethodEvent,	QInputContext,	and	inputMethodHints.

void	QWidget::insertAction	(	QAction	*	before,	QAction	*	action	)
16

qwidget.html#visible-prop
qwidget.html#releaseMouse
qwidget.html#grabKeyboard
qwidget.html#releaseKeyboard
qcursor.html
qwidget.html#grabMouse
qwidget.html#releaseMouse
qwidget.html#grabMouse
qwidget.html#releaseMouse
qwidget.html#grabKeyboard
qwidget.html#releaseKeyboard
qwidget.html#cursor-prop
qkeysequence.html
qt.html#ShortcutContext-enum
qt.html#ShortcutContext-enum
qt.html#ShortcutContext-enum
qt.html#ShortcutContext-enum
qevent.html#Type-enum
qaction.html
qshortcut.html
qaction.html
qshortcut.html
qwidget.html#releaseShortcut
qwidget.html#setShortcutEnabled
qgraphicseffect.html
qwidget.html#setGraphicsEffect
qgraphicsproxywidget.html
qgraphicsproxywidget.html#createProxyForChildWidget
qgraphicsscene.html#addWidget
qwidget.html#setEditFocus
qapplication.html#keypadNavigationEnabled
qdialog.html
qwidget.html#show
qwidget.html#hideEvent
qwidget.html#isHidden
qwidget.html#show
qwidget.html#visible-prop
qwidget.html#visible-prop
qwidget.html#close
qhideevent.html
qwidget.html#visible-prop
qwidget.html#visible-prop
qwidget.html#event
qhideevent.html
qinputcontext.html
qinputcontext.html
qapplication.html
qwidget.html#setInputContext
qwidget.html#setInputContext
qinputmethodevent.html
qt.html#WidgetAttribute-enum
qwidget.html#setAttribute
qinputmethodevent.html
qwidget.html#event
qinputmethodevent.html
qvariant.html
qt.html#InputMethodQuery-enum
qwidget.html#inputMethodEvent
qinputmethodevent.html
qinputcontext.html
qwidget.html#inputMethodHints-prop
qaction.html
qaction.html


Inserts	the	action	action	to	this	widget's	list	of	actions,	before	the	action	before.	It	appends	the	action	if	before	is	0	or	before	is	not	a	valid	action	for	this	widget.

A	QWidget	should	only	have	one	of	each	action.

See	also	removeAction(),	addAction(),	QMenu,	contextMenuPolicy,	and	actions().

void	QWidget::insertActions	(	QAction	*	before,	QList<QAction	*>	actions	)
Inserts	the	actions	actions	to	this	widget's	list	of	actions,	before	the	action	before.	It	appends	the	action	if	before	is	0	or	before	is	not	a	valid	action	for	this	widget.

A	QWidget	can	have	at	most	one	of	each	action.

See	also	removeAction(),	QMenu,	insertAction(),	and	contextMenuPolicy.

bool	QWidget::isAncestorOf	(	const	QWidget	*	child	)	const
Returns	true	if	this	widget	is	a	parent,	(or	grandparent	and	so	on	to	any	level),	of	the	given	child,	and	both	widgets	are	within	the	same	window;	otherwise	returns	false.

bool	QWidget::isEnabledTo	(	QWidget	*	ancestor	)	const
Returns	true	if	this	widget	would	become	enabled	if	ancestor	is	enabled;	otherwise	returns	false.

This	is	the	case	if	neither	the	widget	itself	nor	every	parent	up	to	but	excluding	ancestor	has	been	explicitly	disabled.

isEnabledTo(0)	is	equivalent	to	isEnabled().

See	also	setEnabled()	and	enabled.

bool	QWidget::isHidden	()	const
Returns	true	if	the	widget	is	hidden,	otherwise	returns	false.

A	hidden	widget	will	only	become	visible	when	show()	is	called	on	it.	It	will	not	be	automatically	shown	when	the	parent	is	shown.

To	check	visibility,	use	!isVisible()	instead	(notice	the	exclamation	mark).

isHidden()	implies	!isVisible(),	but	a	widget	can	be	not	visible	and	not	hidden	at	the	same	time.	This	is	the	case	for	widgets	that	are	children	of	widgets	that	are	not	visible.

Widgets	are	hidden	if:

they	were	created	as	independent	windows,
they	were	created	as	children	of	visible	widgets,
hide()	or	setVisible(false)	was	called.

bool	QWidget::isVisibleTo	(	QWidget	*	ancestor	)	const
Returns	true	if	this	widget	would	become	visible	if	ancestor	is	shown;	otherwise	returns	false.

The	true	case	occurs	if	neither	the	widget	itself	nor	any	parent	up	to	but	excluding	ancestor	has	been	explicitly	hidden.

This	function	will	still	return	true	if	the	widget	is	obscured	by	other	windows	on	the	screen,	but	could	be	physically	visible	if	it	or	they	were	to	be	moved.

isVisibleTo(0)	is	identical	to	isVisible().

See	also	show(),	hide(),	and	isVisible().

bool	QWidget::isWindow	()	const
Returns	true	if	the	widget	is	an	independent	window,	otherwise	returns	false.

A	window	is	a	widget	that	isn't	visually	the	child	of	any	other	widget	and	that	usually	has	a	frame	and	a	window	title.

A	window	can	have	a	parent	widget.	It	will	then	be	grouped	with	its	parent	and	deleted	when	the	parent	is	deleted,	minimized	when	the	parent	is	minimized	etc.	If	supported	by	the	window	manager,	it	will	also	have	a	common	taskbar	entry	with	its	parent.

QDialog	and	QMainWindow	widgets	are	by	default	windows,	even	if	a	parent	widget	is	specified	in	the	constructor.	This	behavior	is	specified	by	the	Qt::Window	flag.

See	also	window(),	isModal(),	and	parentWidget().

void	QWidget::keyPressEvent	(	QKeyEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	key	press	events	for	the	widget.

A	widget	must	call	setFocusPolicy()	to	accept	focus	initially	and	have	focus	in	order	to	receive	a	key	press	event.

If	you	reimplement	this	handler,	it	is	very	important	that	you	call	the	base	class	implementation	if	you	do	not	act	upon	the	key.

The	default	implementation	closes	popup	widgets	if	the	user	presses	Esc.	Otherwise	the	event	is	ignored,	so	that	the	widget's	parent	can	interpret	it.

Note	that	QKeyEvent	starts	with	isAccepted()	==	true,	so	you	do	not	need	to	call	QKeyEvent::accept()	-	just	do	not	call	the	base	class	implementation	if	you	act	upon	the	key.

See	also	keyReleaseEvent(),	setFocusPolicy(),	focusInEvent(),	focusOutEvent(),	event(),	QKeyEvent,	and	Tetrix	Example.

void	QWidget::keyReleaseEvent	(	QKeyEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	key	release	events	for	the	widget.

A	widget	must	accept	focus	initially	and	have	focus	in	order	to	receive	a	key	release	event.

If	you	reimplement	this	handler,	it	is	very	important	that	you	call	the	base	class	implementation	if	you	do	not	act	upon	the	key.

The	default	implementation	ignores	the	event,	so	that	the	widget's	parent	can	interpret	it.

Note	that	QKeyEvent	starts	with	isAccepted()	==	true,	so	you	do	not	need	to	call	QKeyEvent::accept()	-	just	do	not	call	the	base	class	implementation	if	you	act	upon	the	key.

See	also	keyPressEvent(),	QKeyEvent::ignore(),	setFocusPolicy(),	focusInEvent(),	focusOutEvent(),	event(),	and	QKeyEvent.

QWidget	*	QWidget::keyboardGrabber	()	[static]
Returns	the	widget	that	is	currently	grabbing	the	keyboard	input.

If	no	widget	in	this	application	is	currently	grabbing	the	keyboard,	0	is	returned.

See	also	grabMouse()	and	mouseGrabber().

QLayout	*	QWidget::layout	()	const
Returns	the	layout	manager	that	is	installed	on	this	widget,	or	0	if	no	layout	manager	is	installed.

The	layout	manager	sets	the	geometry	of	the	widget's	children	that	have	been	added	to	the	layout.

See	also	setLayout(),	sizePolicy(),	and	Layout	Management.

void	QWidget::leaveEvent	(	QEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	leave	events	which	are	passed	in	the	event	parameter.

17

qwidget.html
qwidget.html#removeAction
qwidget.html#addAction
qmenu.html
qwidget.html#contextMenuPolicy-prop
qwidget.html#actions
qaction.html
qlist.html
qaction.html
qwidget.html
qwidget.html#removeAction
qmenu.html
qwidget.html#insertAction
qwidget.html#contextMenuPolicy-prop
qwidget.html#enabled-prop
qwidget.html#enabled-prop
qwidget.html#enabled-prop
qwidget.html#show
qwidget.html#visible-prop
qwidget.html#visible-prop
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#show
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#windowTitle-prop
qwidget.html#parentWidget
qdialog.html
qmainwindow.html
qt.html#WindowType-enum
qwidget.html#window
qwidget.html#modal-prop
qwidget.html#parentWidget
qkeyevent.html
qwidget.html#focusPolicy-prop
qkeyevent.html
qevent.html#accept
qwidget.html#keyReleaseEvent
qwidget.html#focusPolicy-prop
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#event
qkeyevent.html
widgets-tetrix.html
qkeyevent.html
qwidget.html#focusPolicy-prop
qwidget.html#focus-prop
qkeyevent.html
qevent.html#accept
qwidget.html#keyPressEvent
qevent.html#ignore
qwidget.html#focusPolicy-prop
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#event
qkeyevent.html
qwidget.html#grabMouse
qwidget.html#mouseGrabber
qlayout.html
qwidget.html#setLayout
qwidget.html#sizePolicy-prop
layout.html
qevent.html


A	leave	event	is	sent	to	the	widget	when	the	mouse	cursor	leaves	the	widget.

See	also	enterEvent(),	mouseMoveEvent(),	and	event().

void	QWidget::lower	()	[slot]
Lowers	the	widget	to	the	bottom	of	the	parent	widget's	stack.

After	this	call	the	widget	will	be	visually	behind	(and	therefore	obscured	by)	any	overlapping	sibling	widgets.

See	also	raise()	and	stackUnder().

Qt::HANDLE	QWidget::macCGHandle	()	const
Returns	the	CoreGraphics	handle	of	the	widget.	Use	of	this	function	is	not	portable.	This	function	will	return	0	if	no	painter	context	can	be	established,	or	if	the	handle	could	not	be	created.

Warning:	This	function	is	only	available	on	Mac	OS	X.

bool	QWidget::macEvent	(	EventHandlerCallRef	caller,	EventRef	event	)	[virtual	protected]
This	special	event	handler	can	be	reimplemented	in	a	subclass	to	receive	native	Macintosh	events.

The	parameters	are	a	bit	different	depending	if	Qt	is	build	against	Carbon	or	Cocoa.	In	Carbon,	caller	and	event	are	the	corresponding	EventHandlerCallRef	and	EventRef	that	correspond	to	the	Carbon	event	handlers	that	are	installed.	In	Cocoa,	caller	is	always	0	and	the	EventRef	is	the	EventRef	generated	from	the	NSEvent.

In	your	reimplementation	of	this	function,	if	you	want	to	stop	the	event	being	handled	by	Qt,	return	true.	If	you	return	false,	this	native	event	is	passed	back	to	Qt,	which	translates	the	event	into	a	Qt	event	and	sends	it	to	the	widget.

Warning:	This	function	is	not	portable.

Warning:	This	function	was	not	called	inside	of	Qt	until	Qt	4.4.	If	you	need	compatibility	with	earlier	versions	of	Qt,	consider	QApplication::macEventFilter()	instead.

See	also	QApplication::macEventFilter().

Qt::HANDLE	QWidget::macQDHandle	()	const
Returns	the	QuickDraw	handle	of	the	widget.	Use	of	this	function	is	not	portable.	This	function	will	return	0	if	QuickDraw	is	not	supported,	or	if	the	handle	could	not	be	created.

Warning:	This	function	is	only	available	on	Mac	OS	X.

QPoint	QWidget::mapFrom	(	QWidget	*	parent,	const	QPoint	&	pos	)	const
Translates	the	widget	coordinate	pos	from	the	coordinate	system	of	parent	to	this	widget's	coordinate	system.	The	parent	must	not	be	0	and	must	be	a	parent	of	the	calling	widget.

See	also	mapTo(),	mapFromParent(),	mapFromGlobal(),	and	underMouse().

QPoint	QWidget::mapFromGlobal	(	const	QPoint	&	pos	)	const
Translates	the	global	screen	coordinate	pos	to	widget	coordinates.

See	also	mapToGlobal(),	mapFrom(),	and	mapFromParent().

QPoint	QWidget::mapFromParent	(	const	QPoint	&	pos	)	const
Translates	the	parent	widget	coordinate	pos	to	widget	coordinates.

Same	as	mapFromGlobal()	if	the	widget	has	no	parent.

See	also	mapToParent(),	mapFrom(),	mapFromGlobal(),	and	underMouse().

QPoint	QWidget::mapTo	(	QWidget	*	parent,	const	QPoint	&	pos	)	const
Translates	the	widget	coordinate	pos	to	the	coordinate	system	of	parent.	The	parent	must	not	be	0	and	must	be	a	parent	of	the	calling	widget.

See	also	mapFrom(),	mapToParent(),	mapToGlobal(),	and	underMouse().

QPoint	QWidget::mapToGlobal	(	const	QPoint	&	pos	)	const
Translates	the	widget	coordinate	pos	to	global	screen	coordinates.	For	example,	mapToGlobal(QPoint(0,0))	would	give	the	global	coordinates	of	the	top-left	pixel	of	the	widget.

See	also	mapFromGlobal(),	mapTo(),	and	mapToParent().

QPoint	QWidget::mapToParent	(	const	QPoint	&	pos	)	const
Translates	the	widget	coordinate	pos	to	a	coordinate	in	the	parent	widget.

Same	as	mapToGlobal()	if	the	widget	has	no	parent.

See	also	mapFromParent(),	mapTo(),	mapToGlobal(),	and	underMouse().

QRegion	QWidget::mask	()	const
Returns	the	mask	currently	set	on	a	widget.	If	no	mask	is	set	the	return	value	will	be	an	empty	region.

See	also	setMask(),	clearMask(),	QRegion::isEmpty(),	and	Shaped	Clock	Example.

int	QWidget::metric	(	PaintDeviceMetric	m	)	const	[virtual	protected]
Reimplemented	from	QPaintDevice::metric().

Internal	implementation	of	the	virtual	QPaintDevice::metric()	function.

m	is	the	metric	to	get.

void	QWidget::mouseDoubleClickEvent	(	QMouseEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	mouse	double	click	events	for	the	widget.

The	default	implementation	generates	a	normal	mouse	press	event.

Note:	The	widget	will	also	receive	mouse	press	and	mouse	release	events	in	addition	to	the	double	click	event.	It	is	up	to	the	developer	to	ensure	that	the	application	interprets	these	events	correctly.

See	also	mousePressEvent(),	mouseReleaseEvent(),	mouseMoveEvent(),	event(),	and	QMouseEvent.

QWidget	*	QWidget::mouseGrabber	()	[static]
Returns	the	widget	that	is	currently	grabbing	the	mouse	input.

18

qwidget.html#enterEvent
qwidget.html#mouseMoveEvent
qwidget.html#event
qwidget.html#raise
qwidget.html#stackUnder
qt.html#HANDLE-typedef
qapplication.html#macEventFilter
qapplication.html#macEventFilter
qt.html#HANDLE-typedef
qpoint.html
qpoint.html
qwidget.html#mapTo
qwidget.html#mapFromParent
qwidget.html#mapFromGlobal
qwidget.html#underMouse
qpoint.html
qpoint.html
qwidget.html#mapToGlobal
qwidget.html#mapFrom
qwidget.html#mapFromParent
qpoint.html
qpoint.html
qwidget.html#mapFromGlobal
qwidget.html#mapToParent
qwidget.html#mapFrom
qwidget.html#mapFromGlobal
qwidget.html#underMouse
qpoint.html
qpoint.html
qwidget.html#mapFrom
qwidget.html#mapToParent
qwidget.html#mapToGlobal
qwidget.html#underMouse
qpoint.html
qpoint.html
qwidget.html#mapFromGlobal
qwidget.html#mapTo
qwidget.html#mapToParent
qpoint.html
qpoint.html
qwidget.html#mapToGlobal
qwidget.html#mapFromParent
qwidget.html#mapTo
qwidget.html#mapToGlobal
qwidget.html#underMouse
qregion.html
qwidget.html#setMask
qwidget.html#clearMask
qregion.html#isEmpty
widgets-shapedclock.html
qpaintdevice.html#PaintDeviceMetric-enum
qpaintdevice.html#metric
qpaintdevice.html#metric
qmouseevent.html
qwidget.html#mousePressEvent
qwidget.html#mouseReleaseEvent
qwidget.html#mouseMoveEvent
qwidget.html#event
qmouseevent.html


If	no	widget	in	this	application	is	currently	grabbing	the	mouse,	0	is	returned.

See	also	grabMouse()	and	keyboardGrabber().

void	QWidget::mouseMoveEvent	(	QMouseEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	mouse	move	events	for	the	widget.

If	mouse	tracking	is	switched	off,	mouse	move	events	only	occur	if	a	mouse	button	is	pressed	while	the	mouse	is	being	moved.	If	mouse	tracking	is	switched	on,	mouse	move	events	occur	even	if	no	mouse	button	is	pressed.

QMouseEvent::pos()	reports	the	position	of	the	mouse	cursor,	relative	to	this	widget.	For	press	and	release	events,	the	position	is	usually	the	same	as	the	position	of	the	last	mouse	move	event,	but	it	might	be	different	if	the	user's	hand	shakes.	This	is	a	feature	of	the	underlying	window	system,	not	Qt.

If	you	want	to	show	a	tooltip	immediately,	while	the	mouse	is	moving	(e.g.,	to	get	the	mouse	coordinates	with	QMouseEvent::pos()	and	show	them	as	a	tooltip),	you	must	first	enable	mouse	tracking	as	described	above.	Then,	to	ensure	that	the	tooltip	is	updated	immediately,	you	must	call	QToolTip::showText()	instead	of	setToolTip()	in	your	implementation	of	mouseMoveEvent().

See	also	setMouseTracking(),	mousePressEvent(),	mouseReleaseEvent(),	mouseDoubleClickEvent(),	event(),	QMouseEvent,	and	Scribble	Example.

void	QWidget::mousePressEvent	(	QMouseEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	mouse	press	events	for	the	widget.

If	you	create	new	widgets	in	the	mousePressEvent()	the	mouseReleaseEvent()	may	not	end	up	where	you	expect,	depending	on	the	underlying	window	system	(or	X11	window	manager),	the	widgets'	location	and	maybe	more.

The	default	implementation	implements	the	closing	of	popup	widgets	when	you	click	outside	the	window.	For	other	widget	types	it	does	nothing.

See	also	mouseReleaseEvent(),	mouseDoubleClickEvent(),	mouseMoveEvent(),	event(),	QMouseEvent,	and	Scribble	Example.

void	QWidget::mouseReleaseEvent	(	QMouseEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	mouse	release	events	for	the	widget.

See	also	mousePressEvent(),	mouseDoubleClickEvent(),	mouseMoveEvent(),	event(),	QMouseEvent,	and	Scribble	Example.

void	QWidget::moveEvent	(	QMoveEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	move	events	which	are	passed	in	the	event	parameter.	When	the	widget	receives	this	event,	it	is	already	at	the	new	position.

The	old	position	is	accessible	through	QMoveEvent::oldPos().

See	also	resizeEvent(),	event(),	move(),	and	QMoveEvent.

QWidget	*	QWidget::nativeParentWidget	()	const
Returns	the	native	parent	for	this	widget,	i.e.	the	next	ancestor	widget	that	has	a	system	identifier,	or	0	if	it	does	not	have	any	native	parent.

This	function	was	introduced	in	Qt	4.4.

See	also	effectiveWinId().

QWidget	*	QWidget::nextInFocusChain	()	const
Returns	the	next	widget	in	this	widget's	focus	chain.

See	also	previousInFocusChain().

void	QWidget::overrideWindowFlags	(	Qt::WindowFlags	flags	)
Sets	the	window	flags	for	the	widget	to	flags,	without	telling	the	window	system.

Warning:	Do	not	call	this	function	unless	you	really	know	what	you're	doing.

See	also	setWindowFlags().

QPaintEngine	*	QWidget::paintEngine	()	const	[virtual]
Reimplemented	from	QPaintDevice::paintEngine().

Returns	the	widget's	paint	engine.

Note	that	this	function	should	not	be	called	explicitly	by	the	user,	since	it's	meant	for	reimplementation	purposes	only.	The	function	is	called	by	Qt	internally,	and	the	default	implementation	may	not	always	return	a	valid	pointer.

void	QWidget::paintEvent	(	QPaintEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	paint	events	passed	in	event.

A	paint	event	is	a	request	to	repaint	all	or	part	of	a	widget.	It	can	happen	for	one	of	the	following	reasons:

repaint()	or	update()	was	invoked,
the	widget	was	obscured	and	has	now	been	uncovered,	or
many	other	reasons.

Many	widgets	can	simply	repaint	their	entire	surface	when	asked	to,	but	some	slow	widgets	need	to	optimize	by	painting	only	the	requested	region:	QPaintEvent::region().	This	speed	optimization	does	not	change	the	result,	as	painting	is	clipped	to	that	region	during	event	processing.	QListView	and	QTableView	do	this,	for	example.

Qt	also	tries	to	speed	up	painting	by	merging	multiple	paint	events	into	one.	When	update()	is	called	several	times	or	the	window	system	sends	several	paint	events,	Qt	merges	these	events	into	one	event	with	a	larger	region	(see	QRegion::united()).	The	repaint()	function	does	not	permit	this	optimization,	so	we	suggest	using	update()	whenever	possible.

When	the	paint	event	occurs,	the	update	region	has	normally	been	erased,	so	you	are	painting	on	the	widget's	background.

The	background	can	be	set	using	setBackgroundRole()	and	setPalette().

Since	Qt	4.0,	QWidget	automatically	double-buffers	its	painting,	so	there	is	no	need	to	write	double-buffering	code	in	paintEvent()	to	avoid	flicker.

Note	for	the	X11	platform:	It	is	possible	to	toggle	global	double	buffering	by	calling	qt_x11_set_global_double_buffer().	For	example,

	...
	extern	void	qt_x11_set_global_double_buffer(bool);
	qt_x11_set_global_double_buffer(false);
	...

Note:	Generally,	you	should	refrain	from	calling	update()	or	repaint()	inside	a	paintEvent().	For	example,	calling	update()	or	repaint()	on	children	inside	a	paintevent()	results	in	undefined	behavior;	the	child	may	or	may	not	get	a	paint	event.

Warning:	If	you	are	using	a	custom	paint	engine	without	Qt's	backingstore,	Qt::WA_PaintOnScreen	must	be	set.	Otherwise,	QWidget::paintEngine()	will	never	be	called;	the	backingstore	will	be	used	instead.

See	also	event(),	repaint(),	update(),	QPainter,	QPixmap,	QPaintEvent,	and	Analog	Clock	Example.

QWidget	*	QWidget::parentWidget	()	const
Returns	the	parent	of	this	widget,	or	0	if	it	does	not	have	any	parent	widget.

QPlatformWindow	*	QWidget::platformWindow	()	const
This	function	is	under	development	and	is	subject	to	change.

Returns	the	QPlatformWindow	this	widget	will	be	drawn	into.

This	function	was	introduced	in	Qt	4.8.

See	also	setPlatformWindow().

19

qwidget.html#grabMouse
qwidget.html#keyboardGrabber
qmouseevent.html
qmouseevent.html#pos
qmouseevent.html#pos
qtooltip.html#showText
qwidget.html#toolTip-prop
qwidget.html#mouseTracking-prop
qwidget.html#mousePressEvent
qwidget.html#mouseReleaseEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#event
qmouseevent.html
widgets-scribble.html
qmouseevent.html
qwidget.html#mouseReleaseEvent
qwidget.html#mouseReleaseEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#mouseMoveEvent
qwidget.html#event
qmouseevent.html
widgets-scribble.html
qmouseevent.html
qwidget.html#mousePressEvent
qwidget.html#mouseDoubleClickEvent
qwidget.html#mouseMoveEvent
qwidget.html#event
qmouseevent.html
widgets-scribble.html
qmoveevent.html
qmoveevent.html#oldPos
qwidget.html#resizeEvent
qwidget.html#event
qwidget.html#pos-prop
qmoveevent.html
qwidget.html#effectiveWinId
qwidget.html#previousInFocusChain
qt.html#WindowType-enum
qwidget.html#windowFlags-prop
qpaintengine.html
qpaintdevice.html#paintEngine
qpaintevent.html
qwidget.html#repaint
qwidget.html#update
qpaintevent.html#region
qlistview.html
qtableview.html
qwidget.html#update
qregion.html#united
qwidget.html#repaint
qwidget.html#update
qwidget.html#setBackgroundRole
qwidget.html#palette-prop
qwidget.html
qwidget.html#update
qwidget.html#repaint
qwidget.html#update
qwidget.html#repaint
qt.html#WidgetAttribute-enum
qwidget.html#paintEngine
qwidget.html#event
qwidget.html#repaint
qwidget.html#update
qpainter.html
qpixmap.html
qpaintevent.html
widgets-analogclock.html
qwidget.html#setPlatformWindow


QPlatformWindowFormat	QWidget::platformWindowFormat	()	const
Returns	the	platform	window	format	for	the	widget.

This	function	was	introduced	in	Qt	4.8.

See	also	setPlatformWindowFormat().

QWidget	*	QWidget::previousInFocusChain	()	const
The	previousInFocusChain	function	returns	the	previous	widget	in	this	widget's	focus	chain.

This	function	was	introduced	in	Qt	4.6.

See	also	nextInFocusChain().

bool	QWidget::qwsEvent	(	QWSEvent	*	event	)	[virtual	protected]
This	special	event	handler	can	be	reimplemented	in	a	subclass	to	receive	native	Qt	for	Embedded	Linux	events	which	are	passed	in	the	event	parameter.

In	your	reimplementation	of	this	function,	if	you	want	to	stop	the	event	being	handled	by	Qt,	return	true.	If	you	return	false,	this	native	event	is	passed	back	to	Qt,	which	translates	the	event	into	a	Qt	event	and	sends	it	to	the	widget.

Warning:	This	function	is	not	portable.

See	also	QApplication::qwsEventFilter().

void	QWidget::raise	()	[slot]
Raises	this	widget	to	the	top	of	the	parent	widget's	stack.

After	this	call	the	widget	will	be	visually	in	front	of	any	overlapping	sibling	widgets.

Note:	When	using	activateWindow(),	you	can	call	this	function	to	ensure	that	the	window	is	stacked	on	top.

See	also	lower()	and	stackUnder().

void	QWidget::releaseDC	(	HDC	hdc	)	const	[virtual]
Releases	the	HDC	hdc	acquired	by	a	previous	call	to	getDC().

Warning:	Using	this	function	is	not	portable.

void	QWidget::releaseKeyboard	()
Releases	the	keyboard	grab.

See	also	grabKeyboard(),	grabMouse(),	and	releaseMouse().

void	QWidget::releaseMouse	()
Releases	the	mouse	grab.

See	also	grabMouse(),	grabKeyboard(),	and	releaseKeyboard().

void	QWidget::releaseShortcut	(	int	id	)
Removes	the	shortcut	with	the	given	id	from	Qt's	shortcut	system.	The	widget	will	no	longer	receive	QEvent::Shortcut	events	for	the	shortcut's	key	sequence	(unless	it	has	other	shortcuts	with	the	same	key	sequence).

Warning:	You	should	not	normally	need	to	use	this	function	since	Qt's	shortcut	system	removes	shortcuts	automatically	when	their	parent	widget	is	destroyed.	It	is	best	to	use	QAction	or	QShortcut	to	handle	shortcuts,	since	they	are	easier	to	use	than	this	low-level	function.	Note	also	that	this	is	an	expensive	operation.

See	also	grabShortcut()	and	setShortcutEnabled().

void	QWidget::removeAction	(	QAction	*	action	)
Removes	the	action	action	from	this	widget's	list	of	actions.

See	also	insertAction(),	actions(),	and	insertAction().

void	QWidget::render	(	QPaintDevice	*	target,	const	QPoint	&	targetOffset	=	QPoint(),	const
QRegion	&	sourceRegion	=	QRegion(),	RenderFlags	renderFlags	=	RenderFlags(
DrawWindowBackground	|	DrawChildren	)	)
Renders	the	sourceRegion	of	this	widget	into	the	target	using	renderFlags	to	determine	how	to	render.	Rendering	starts	at	targetOffset	in	the	target.	For	example:

	QPixmap	pixmap(widget->size());
	widget->render(&pixmap);

If	sourceRegion	is	a	null	region,	this	function	will	use	QWidget::rect()	as	the	region,	i.e.	the	entire	widget.

Ensure	that	you	call	QPainter::end()	for	the	target	device's	active	painter	(if	any)	before	rendering.	For	example:

	QPainter	painter(this);
	...
	painter.end();
	myWidget->render(this);

Note:	To	obtain	the	contents	of	an	OpenGL	widget,	use	QGLWidget::grabFrameBuffer()	or	QGLWidget::renderPixmap()	instead.

This	function	was	introduced	in	Qt	4.3.

void	QWidget::render	(	QPainter	*	painter,	const	QPoint	&	targetOffset	=	QPoint(),	const
QRegion	&	sourceRegion	=	QRegion(),	RenderFlags	renderFlags	=	RenderFlags(
DrawWindowBackground	|	DrawChildren	)	)
This	is	an	overloaded	function.

Renders	the	widget	into	the	painter's	QPainter::device().

Transformations	and	settings	applied	to	the	painter	will	be	used	when	rendering.

Note:	The	painter	must	be	active.	On	Mac	OS	X	the	widget	will	be	rendered	into	a	QPixmap	and	then	drawn	by	the	painter.

See	also	QPainter::device().

void	QWidget::repaint	()	[slot]
Repaints	the	widget	directly	by	calling	paintEvent()	immediately,	unless	updates	are	disabled	or	the	widget	is	hidden.

We	suggest	only	using	repaint()	if	you	need	an	immediate	repaint,	for	example	during	animation.	In	almost	all	circumstances	update()	is	better,	as	it	permits	Qt	to	optimize	for	speed	and	minimize	flicker.

20

qplatformwindowformat.html
qwidget.html#setPlatformWindowFormat
qwidget.html#nextInFocusChain
qwsevent.html
qapplication.html#qwsEventFilter
qwidget.html#activateWindow
qwidget.html#lower
qwidget.html#stackUnder
qwidget.html#getDC
qwidget.html#grabKeyboard
qwidget.html#grabMouse
qwidget.html#releaseMouse
qwidget.html#grabMouse
qwidget.html#grabKeyboard
qwidget.html#releaseKeyboard
qevent.html#Type-enum
qaction.html
qshortcut.html
qwidget.html#grabShortcut
qwidget.html#setShortcutEnabled
qaction.html
qwidget.html#insertAction
qwidget.html#actions
qwidget.html#insertAction
qpaintdevice.html
qpoint.html
qregion.html
qwidget.html#RenderFlag-enum
qpixmap.html
qwidget.html#rect-prop
qpainter.html#end
qpainter.html
qglwidget.html#grabFrameBuffer
qglwidget.html#renderPixmap
qpainter.html
qpoint.html
qregion.html
qwidget.html#RenderFlag-enum
qpainter.html#device
qpixmap.html
qpainter.html#device
qwidget.html#paintEvent
qwidget.html#update


Warning:	If	you	call	repaint()	in	a	function	which	may	itself	be	called	from	paintEvent(),	you	may	get	infinite	recursion.	The	update()	function	never	causes	recursion.

See	also	update(),	paintEvent(),	and	setUpdatesEnabled().

void	QWidget::repaint	(	int	x,	int	y,	int	w,	int	h	)
This	is	an	overloaded	function.

This	version	repaints	a	rectangle	(x,	y,	w,	h)	inside	the	widget.

If	w	is	negative,	it	is	replaced	with	width()	-	x,	and	if	h	is	negative,	it	is	replaced	width	height()	-	y.

void	QWidget::repaint	(	const	QRect	&	rect	)
This	is	an	overloaded	function.

This	version	repaints	a	rectangle	rect	inside	the	widget.

void	QWidget::repaint	(	const	QRegion	&	rgn	)
This	is	an	overloaded	function.

This	version	repaints	a	region	rgn	inside	the	widget.

void	QWidget::resizeEvent	(	QResizeEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	resize	events	which	are	passed	in	the	event	parameter.	When	resizeEvent()	is	called,	the	widget	already	has	its	new	geometry.	The	old	size	is	accessible	through	QResizeEvent::oldSize().

The	widget	will	be	erased	and	receive	a	paint	event	immediately	after	processing	the	resize	event.	No	drawing	need	be	(or	should	be)	done	inside	this	handler.

See	also	moveEvent(),	event(),	resize(),	QResizeEvent,	paintEvent(),	and	Scribble	Example.

bool	QWidget::restoreGeometry	(	const	QByteArray	&	geometry	)
Restores	the	geometry	and	state	top-level	widgets	stored	in	the	byte	array	geometry.	Returns	true	on	success;	otherwise	returns	false.

If	the	restored	geometry	is	off-screen,	it	will	be	modified	to	be	inside	the	available	screen	geometry.

To	restore	geometry	saved	using	QSettings,	you	can	use	code	like	this:

	QSettings	settings("MyCompany",	"MyApp");
	myWidget->restoreGeometry(settings.value("myWidget/geometry").toByteArray());

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

Use	QMainWindow::restoreState()	to	restore	the	geometry	and	the	state	of	toolbars	and	dock	widgets.

This	function	was	introduced	in	Qt	4.2.

See	also	saveGeometry(),	QSettings,	QMainWindow::saveState(),	and	QMainWindow::restoreState().

QByteArray	QWidget::saveGeometry	()	const
Saves	the	current	geometry	and	state	for	top-level	widgets.

To	save	the	geometry	when	the	window	closes,	you	can	implement	a	close	event	like	this:

	void	MyWidget::closeEvent(QCloseEvent	*event)
	{
					QSettings	settings("MyCompany",	"MyApp");
					settings.setValue("geometry",	saveGeometry());
					QWidget::closeEvent(event);
	}

See	the	Window	Geometry	documentation	for	an	overview	of	geometry	issues	with	windows.

Use	QMainWindow::saveState()	to	save	the	geometry	and	the	state	of	toolbars	and	dock	widgets.

This	function	was	introduced	in	Qt	4.2.

See	also	restoreGeometry(),	QMainWindow::saveState(),	and	QMainWindow::restoreState().

void	QWidget::scroll	(	int	dx,	int	dy	)
Scrolls	the	widget	including	its	children	dx	pixels	to	the	right	and	dy	downward.	Both	dx	and	dy	may	be	negative.

After	scrolling,	the	widgets	will	receive	paint	events	for	the	areas	that	need	to	be	repainted.	For	widgets	that	Qt	knows	to	be	opaque,	this	is	only	the	newly	exposed	parts.	For	example,	if	an	opaque	widget	is	scrolled	8	pixels	to	the	left,	only	an	8-pixel	wide	stripe	at	the	right	edge	needs	updating.

Since	widgets	propagate	the	contents	of	their	parents	by	default,	you	need	to	set	the	autoFillBackground	property,	or	use	setAttribute()	to	set	the	Qt::WA_OpaquePaintEvent	attribute,	to	make	a	widget	opaque.

For	widgets	that	use	contents	propagation,	a	scroll	will	cause	an	update	of	the	entire	scroll	area.

See	also	Transparency	and	Double	Buffering.

void	QWidget::scroll	(	int	dx,	int	dy,	const	QRect	&	r	)
This	is	an	overloaded	function.

This	version	only	scrolls	r	and	does	not	move	the	children	of	the	widget.

If	r	is	empty	or	invalid,	the	result	is	undefined.

See	also	QScrollArea.

void	QWidget::setAttribute	(	Qt::WidgetAttribute	attribute,	bool	on	=	true	)
Sets	the	attribute	attribute	on	this	widget	if	on	is	true;	otherwise	clears	the	attribute.

See	also	testAttribute().

void	QWidget::setBackgroundRole	(	QPalette::ColorRole	role	)
Sets	the	background	role	of	the	widget	to	role.

The	background	role	defines	the	brush	from	the	widget's	palette	that	is	used	to	render	the	background.

If	role	is	QPalette::NoRole,	then	the	widget	inherits	its	parent's	background	role.

Note	that	styles	are	free	to	choose	any	color	from	the	palette.	You	can	modify	the	palette	or	set	a	style	sheet	if	you	don't	achieve	the	result	you	want	with	setBackgroundRole().

See	also	backgroundRole()	and	foregroundRole().

void	QWidget::setContentsMargins	(	int	left,	int	top,	int	right,	int	bottom	)
Sets	the	margins	around	the	contents	of	the	widget	to	have	the	sizes	left,	top,	right,	and	bottom.	The	margins	are	used	by	the	layout	system,	and	may	be	used	by	subclasses	to	specify	the	area	to	draw	in	(e.g.	excluding	the	frame).

Changing	the	margins	will	trigger	a	resizeEvent().

See	also	contentsMargins(),	contentsRect(),	and	getContentsMargins().

21

qwidget.html#paintEvent
qwidget.html#update
qwidget.html#update
qwidget.html#paintEvent
qwidget.html#updatesEnabled-prop
qrect.html
qregion.html
qresizeevent.html
qresizeevent.html#oldSize
qwidget.html#moveEvent
qwidget.html#event
qwidget.html#size-prop
qresizeevent.html
qwidget.html#paintEvent
widgets-scribble.html
qbytearray.html
qsettings.html
qsettings.html
application-windows.html#window-geometry
qmainwindow.html#restoreState
qwidget.html#saveGeometry
qsettings.html
qmainwindow.html#saveState
qmainwindow.html#restoreState
qbytearray.html
qwidget.html#closeEvent
qcloseevent.html
qsettings.html
qwidget.html
application-windows.html#window-geometry
qmainwindow.html#saveState
qwidget.html#restoreGeometry
qmainwindow.html#saveState
qmainwindow.html#restoreState
qwidget.html#autoFillBackground-prop
qwidget.html#setAttribute
qt.html#WidgetAttribute-enum
qwidget.html#transparency-and-double-buffering
qrect.html
qscrollarea.html
qt.html#WidgetAttribute-enum
qwidget.html#testAttribute
qpalette.html#ColorRole-enum
qwidget.html#palette-prop
qpalette.html#ColorRole-enum
qwidget.html#backgroundRole
qwidget.html#foregroundRole
qwidget.html#resizeEvent
qwidget.html#contentsMargins
qwidget.html#contentsRect
qwidget.html#getContentsMargins


void	QWidget::setContentsMargins	(	const	QMargins	&	margins	)
This	is	an	overloaded	function.

The	setContentsMargins	function	sets	the	margins	around	the	widget's	contents.

Sets	the	margins	around	the	contents	of	the	widget	to	have	the	sizes	determined	by	margins.	The	margins	are	used	by	the	layout	system,	and	may	be	used	by	subclasses	to	specify	the	area	to	draw	in	(e.g.	excluding	the	frame).

Changing	the	margins	will	trigger	a	resizeEvent().

This	function	was	introduced	in	Qt	4.6.

See	also	contentsRect()	and	getContentsMargins().

void	QWidget::setDisabled	(	bool	disable	)	[slot]
Disables	widget	input	events	if	disable	is	true;	otherwise	enables	input	events.

See	the	enabled	documentation	for	more	information.

See	also	isEnabledTo(),	QKeyEvent,	QMouseEvent,	and	changeEvent().

void	QWidget::setEditFocus	(	bool	enable	)
If	enable	is	true,	make	this	widget	have	edit	focus,	in	which	case	Qt::Key_Up	and	Qt::Key_Down	will	be	delivered	to	the	widget	normally;	otherwise,	Qt::Key_Up	and	Qt::Key_Down	are	used	to	change	focus.

This	feature	is	only	available	in	Qt	for	Embedded	Linux	and	Qt	for	Symbian.

See	also	hasEditFocus()	and	QApplication::keypadNavigationEnabled().

void	QWidget::setFixedHeight	(	int	h	)
Sets	both	the	minimum	and	maximum	heights	of	the	widget	to	h	without	changing	the	widths.	Provided	for	convenience.

See	also	sizeHint(),	minimumSize(),	maximumSize(),	and	setFixedSize().

void	QWidget::setFixedSize	(	const	QSize	&	s	)
Sets	both	the	minimum	and	maximum	sizes	of	the	widget	to	s,	thereby	preventing	it	from	ever	growing	or	shrinking.

This	will	override	the	default	size	constraints	set	by	QLayout.

To	remove	constraints,	set	the	size	to	QWIDGETSIZE_MAX.

Alternatively,	if	you	want	the	widget	to	have	a	fixed	size	based	on	its	contents,	you	can	call	QLayout::setSizeConstraint(QLayout::SetFixedSize);

See	also	maximumSize	and	minimumSize.

void	QWidget::setFixedSize	(	int	w,	int	h	)
This	is	an	overloaded	function.

Sets	the	width	of	the	widget	to	w	and	the	height	to	h.

void	QWidget::setFixedWidth	(	int	w	)
Sets	both	the	minimum	and	maximum	width	of	the	widget	to	w	without	changing	the	heights.	Provided	for	convenience.

See	also	sizeHint(),	minimumSize(),	maximumSize(),	and	setFixedSize().

void	QWidget::setFocus	(	Qt::FocusReason	reason	)
Gives	the	keyboard	input	focus	to	this	widget	(or	its	focus	proxy)	if	this	widget	or	one	of	its	parents	is	the	active	window.	The	reason	argument	will	be	passed	into	any	focus	event	sent	from	this	function,	it	is	used	to	give	an	explanation	of	what	caused	the	widget	to	get	focus.	If	the	window	is	not	active,	the	widget	will	be	given	the	focus	when	the	window	becomes	active.

First,	a	focus	out	event	is	sent	to	the	focus	widget	(if	any)	to	tell	it	that	it	is	about	to	lose	the	focus.	Then	a	focus	in	event	is	sent	to	this	widget	to	tell	it	that	it	just	received	the	focus.	(Nothing	happens	if	the	focus	in	and	focus	out	widgets	are	the	same.)

Note:	On	embedded	platforms,	setFocus()	will	not	cause	an	input	panel	to	be	opened	by	the	input	method.	If	you	want	this	to	happen,	you	have	to	send	a	QEvent::RequestSoftwareInputPanel	event	to	the	widget	yourself.

setFocus()	gives	focus	to	a	widget	regardless	of	its	focus	policy,	but	does	not	clear	any	keyboard	grab	(see	grabKeyboard()).

Be	aware	that	if	the	widget	is	hidden,	it	will	not	accept	focus	until	it	is	shown.

Warning:	If	you	call	setFocus()	in	a	function	which	may	itself	be	called	from	focusOutEvent()	or	focusInEvent(),	you	may	get	an	infinite	recursion.

See	also	hasFocus(),	clearFocus(),	focusInEvent(),	focusOutEvent(),	setFocusPolicy(),	focusWidget(),	QApplication::focusWidget(),	grabKeyboard(),	grabMouse(),	Keyboard	Focus,	and	QEvent::RequestSoftwareInputPanel.

void	QWidget::setFocus	()	[slot]
This	is	an	overloaded	function.

Gives	the	keyboard	input	focus	to	this	widget	(or	its	focus	proxy)	if	this	widget	or	one	of	its	parents	is	the	active	window.

void	QWidget::setFocusProxy	(	QWidget	*	w	)
Sets	the	widget's	focus	proxy	to	widget	w.	If	w	is	0,	the	function	resets	this	widget	to	have	no	focus	proxy.

Some	widgets	can	"have	focus",	but	create	a	child	widget,	such	as	QLineEdit,	to	actually	handle	the	focus.	In	this	case,	the	widget	can	set	the	line	edit	to	be	its	focus	proxy.

setFocusProxy()	sets	the	widget	which	will	actually	get	focus	when	"this	widget"	gets	it.	If	there	is	a	focus	proxy,	setFocus()	and	hasFocus()	operate	on	the	focus	proxy.

See	also	focusProxy().

void	QWidget::setForegroundRole	(	QPalette::ColorRole	role	)
Sets	the	foreground	role	of	the	widget	to	role.

The	foreground	role	defines	the	color	from	the	widget's	palette	that	is	used	to	draw	the	foreground.

If	role	is	QPalette::NoRole,	the	widget	uses	a	foreground	role	that	contrasts	with	the	background	role.

Note	that	styles	are	free	to	choose	any	color	from	the	palette.	You	can	modify	the	palette	or	set	a	style	sheet	if	you	don't	achieve	the	result	you	want	with	setForegroundRole().

See	also	foregroundRole()	and	backgroundRole().

void	QWidget::setGraphicsEffect	(	QGraphicsEffect	*	effect	)
The	setGraphicsEffect	function	is	for	setting	the	widget's	graphics	effect.

Sets	effect	as	the	widget's	effect.	If	there	already	is	an	effect	installed	on	this	widget,	QWidget	will	delete	the	existing	effect	before	installing	the	new	effect.

If	effect	is	the	installed	on	a	different	widget,	setGraphicsEffect()	will	remove	the	effect	from	the	widget	and	install	it	on	this	widget.

22

qmargins.html
qwidget.html#resizeEvent
qwidget.html#contentsRect
qwidget.html#getContentsMargins
qwidget.html#enabled-prop
qwidget.html#isEnabledTo
qkeyevent.html
qmouseevent.html
qwidget.html#changeEvent
qt.html#Key-enum
qt.html#Key-enum
qt.html#Key-enum
qt.html#Key-enum
qwidget.html#hasEditFocus
qapplication.html#keypadNavigationEnabled
qwidget.html#sizeHint-prop
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#setFixedSize
qsize.html
qlayout.html
qwidget.html#QWIDGETSIZE_MAX
qlayout.html#SizeConstraint-enum
qwidget.html#maximumSize-prop
qwidget.html#minimumSize-prop
qwidget.html#sizeHint-prop
qwidget.html#minimumSize-prop
qwidget.html#maximumSize-prop
qwidget.html#setFixedSize
qt.html#FocusReason-enum
qwidget.html#isActiveWindow-prop
qevent.html#Type-enum
qwidget.html#grabKeyboard
qwidget.html#focusOutEvent
qwidget.html#focusInEvent
qwidget.html#focus-prop
qwidget.html#clearFocus
qwidget.html#focusInEvent
qwidget.html#focusOutEvent
qwidget.html#focusPolicy-prop
qwidget.html#focusWidget
qapplication.html#focusWidget
qwidget.html#grabKeyboard
qwidget.html#grabMouse
focus.html
qevent.html#Type-enum
qwidget.html#isActiveWindow-prop
qlineedit.html
qwidget.html#setFocus
qwidget.html#focus-prop
qwidget.html#focusProxy
qpalette.html#ColorRole-enum
qwidget.html#palette-prop
qpalette.html#ColorRole-enum
qwidget.html#foregroundRole
qwidget.html#backgroundRole
qgraphicseffect.html
qwidget.html


QWidget	takes	ownership	of	effect.

Note:	This	function	will	apply	the	effect	on	itself	and	all	its	children.

Note:	Graphics	effects	are	not	supported	on	Mac,	so	they	will	not	cause	any	difference	to	the	rendering	of	the	widget.

This	function	was	introduced	in	Qt	4.6.

See	also	graphicsEffect().

void	QWidget::setHidden	(	bool	hidden	)	[slot]
Convenience	function,	equivalent	to	setVisible(!hidden).

See	also	isHidden().

void	QWidget::setInputContext	(	QInputContext	*	context	)
This	function	sets	the	input	context	context	on	this	widget.

Qt	takes	ownership	of	the	given	input	context.

See	also	inputContext().

void	QWidget::setLayout	(	QLayout	*	layout	)
Sets	the	layout	manager	for	this	widget	to	layout.

If	there	already	is	a	layout	manager	installed	on	this	widget,	QWidget	won't	let	you	install	another.	You	must	first	delete	the	existing	layout	manager	(returned	by	layout())	before	you	can	call	setLayout()	with	the	new	layout.

If	layout	is	the	layout	manger	on	a	different	widget,	setLayout()	will	reparent	the	layout	and	make	it	the	layout	manager	for	this	widget.

Example:

					QVBoxLayout	*layout	=	new	QVBoxLayout;
					layout->addWidget(formWidget);
					setLayout(layout);

An	alternative	to	calling	this	function	is	to	pass	this	widget	to	the	layout's	constructor.

The	QWidget	will	take	ownership	of	layout.

See	also	layout()	and	Layout	Management.

void	QWidget::setMask	(	const	QBitmap	&	bitmap	)
Causes	only	the	pixels	of	the	widget	for	which	bitmap	has	a	corresponding	1	bit	to	be	visible.	If	the	region	includes	pixels	outside	the	rect()	of	the	widget,	window	system	controls	in	that	area	may	or	may	not	be	visible,	depending	on	the	platform.

Note	that	this	effect	can	be	slow	if	the	region	is	particularly	complex.

The	following	code	shows	how	an	image	with	an	alpha	channel	can	be	used	to	generate	a	mask	for	a	widget:

					QLabel	topLevelLabel;
					QPixmap	pixmap(":/images/tux.png");
					topLevelLabel.setPixmap(pixmap);
					topLevelLabel.setMask(pixmap.mask());

The	label	shown	by	this	code	is	masked	using	the	image	it	contains,	giving	the	appearance	that	an	irregularly-shaped	image	is	being	drawn	directly	onto	the	screen.

Masked	widgets	receive	mouse	events	only	on	their	visible	portions.

See	also	mask(),	clearMask(),	windowOpacity(),	and	Shaped	Clock	Example.

void	QWidget::setMask	(	const	QRegion	&	region	)
This	is	an	overloaded	function.

Causes	only	the	parts	of	the	widget	which	overlap	region	to	be	visible.	If	the	region	includes	pixels	outside	the	rect()	of	the	widget,	window	system	controls	in	that	area	may	or	may	not	be	visible,	depending	on	the	platform.

Note	that	this	effect	can	be	slow	if	the	region	is	particularly	complex.

See	also	windowOpacity.

void	QWidget::setParent	(	QWidget	*	parent	)
Sets	the	parent	of	the	widget	to	parent,	and	resets	the	window	flags.	The	widget	is	moved	to	position	(0,	0)	in	its	new	parent.

If	the	new	parent	widget	is	in	a	different	window,	the	reparented	widget	and	its	children	are	appended	to	the	end	of	the	tab	chain	of	the	new	parent	widget,	in	the	same	internal	order	as	before.	If	one	of	the	moved	widgets	had	keyboard	focus,	setParent()	calls	clearFocus()	for	that	widget.

If	the	new	parent	widget	is	in	the	same	window	as	the	old	parent,	setting	the	parent	doesn't	change	the	tab	order	or	keyboard	focus.

If	the	"new"	parent	widget	is	the	old	parent	widget,	this	function	does	nothing.

Note:	The	widget	becomes	invisible	as	part	of	changing	its	parent,	even	if	it	was	previously	visible.	You	must	call	show()	to	make	the	widget	visible	again.

Warning:	It	is	very	unlikely	that	you	will	ever	need	this	function.	If	you	have	a	widget	that	changes	its	content	dynamically,	it	is	far	easier	to	use	QStackedWidget.

See	also	setWindowFlags().

void	QWidget::setParent	(	QWidget	*	parent,	Qt::WindowFlags	f	)
This	is	an	overloaded	function.

This	function	also	takes	widget	flags,	f	as	an	argument.

void	QWidget::setPlatformWindow	(	QPlatformWindow	*	window	)
This	function	is	under	development	and	is	subject	to	change.

Sets	the	window	to	be	the	platform	window	specified.

The	widget	takes	ownership	of	the	window.	Any	platform	window	previously	set	on	the	widget	will	be	destroyed.

This	function	was	introduced	in	Qt	4.8.

See	also	platformWindow().

void	QWidget::setPlatformWindowFormat	(	const	QPlatformWindowFormat	&	format	)
Sets	the	platform	window	format	for	the	widget	to	the	format	specified.

This	function	was	introduced	in	Qt	4.8.

See	also	platformWindowFormat().

void	QWidget::setShortcutAutoRepeat	(	int	id,	bool	enable	=	true	)
If	enable	is	true,	auto	repeat	of	the	shortcut	with	the	given	id	is	enabled;	otherwise	it	is	disabled.

This	function	was	introduced	in	Qt	4.2.

23

qwidget.html
qwidget.html#graphicsEffect
qwidget.html#isHidden
qinputcontext.html
qwidget.html#inputContext
qlayout.html
qwidget.html
qwidget.html#layout
qvboxlayout.html
qvboxlayout.html
qwidget.html
qwidget.html#layout
layout.html
qbitmap.html
qwidget.html#rect-prop
qlabel.html
qpixmap.html
qwidget.html#mask
qwidget.html#clearMask
qwidget.html#windowOpacity-prop
widgets-shapedclock.html
qregion.html
qwidget.html#rect-prop
qwidget.html#windowOpacity-prop
qwidget.html#focusPolicy-prop
qwidget.html#clearFocus
qwidget.html#show
qstackedwidget.html
qwidget.html#windowFlags-prop
qt.html#WindowType-enum
qwidget.html#platformWindow
qplatformwindowformat.html
qwidget.html#platformWindowFormat


See	also	grabShortcut()	and	releaseShortcut().

void	QWidget::setShortcutEnabled	(	int	id,	bool	enable	=	true	)
If	enable	is	true,	the	shortcut	with	the	given	id	is	enabled;	otherwise	the	shortcut	is	disabled.

Warning:	You	should	not	normally	need	to	use	this	function	since	Qt's	shortcut	system	enables/disables	shortcuts	automatically	as	widgets	become	hidden/visible	and	gain	or	lose	focus.	It	is	best	to	use	QAction	or	QShortcut	to	handle	shortcuts,	since	they	are	easier	to	use	than	this	low-level	function.

See	also	grabShortcut()	and	releaseShortcut().

void	QWidget::setStyle	(	QStyle	*	style	)
Sets	the	widget's	GUI	style	to	style.	The	ownership	of	the	style	object	is	not	transferred.

If	no	style	is	set,	the	widget	uses	the	application's	style,	QApplication::style()	instead.

Setting	a	widget's	style	has	no	effect	on	existing	or	future	child	widgets.

Warning:	This	function	is	particularly	useful	for	demonstration	purposes,	where	you	want	to	show	Qt's	styling	capabilities.	Real	applications	should	avoid	it	and	use	one	consistent	GUI	style	instead.

Warning:	Qt	style	sheets	are	currently	not	supported	for	custom	QStyle	subclasses.	We	plan	to	address	this	in	some	future	release.

See	also	style(),	QStyle,	QApplication::style(),	and	QApplication::setStyle().

void	QWidget::setTabOrder	(	QWidget	*	first,	QWidget	*	second	)	[static]
Puts	the	second	widget	after	the	first	widget	in	the	focus	order.

Note	that	since	the	tab	order	of	the	second	widget	is	changed,	you	should	order	a	chain	like	this:

	setTabOrder(a,	b);	//	a	to	b
	setTabOrder(b,	c);	//	a	to	b	to	c
	setTabOrder(c,	d);	//	a	to	b	to	c	to	d

not	like	this:

	//	WRONG
	setTabOrder(c,	d);	//	c	to	d
	setTabOrder(a,	b);	//	a	to	b	AND	c	to	d
	setTabOrder(b,	c);	//	a	to	b	to	c,	but	not	c	to	d

If	first	or	second	has	a	focus	proxy,	setTabOrder()	correctly	substitutes	the	proxy.

See	also	setFocusPolicy(),	setFocusProxy(),	and	Keyboard	Focus.

void	QWidget::setWindowRole	(	const	QString	&	role	)
Sets	the	window's	role	to	role.	This	only	makes	sense	for	windows	on	X11.

See	also	windowRole().

void	QWidget::setWindowState	(	Qt::WindowStates	windowState	)
Sets	the	window	state	to	windowState.	The	window	state	is	a	OR'ed	combination	of	Qt::WindowState:	Qt::WindowMinimized,	Qt::WindowMaximized,	Qt::WindowFullScreen,	and	Qt::WindowActive.

If	the	window	is	not	visible	(i.e.	isVisible()	returns	false),	the	window	state	will	take	effect	when	show()	is	called.	For	visible	windows,	the	change	is	immediate.	For	example,	to	toggle	between	full-screen	and	normal	mode,	use	the	following	code:

	w->setWindowState(w->windowState()	^	Qt::WindowFullScreen);

In	order	to	restore	and	activate	a	minimized	window	(while	preserving	its	maximized	and/or	full-screen	state),	use	the	following:

	w->setWindowState(w->windowState()	&	~Qt::WindowMinimized	|	Qt::WindowActive);

Calling	this	function	will	hide	the	widget.	You	must	call	show()	to	make	the	widget	visible	again.

Note:	On	some	window	systems	Qt::WindowActive	is	not	immediate,	and	may	be	ignored	in	certain	cases.

When	the	window	state	changes,	the	widget	receives	a	changeEvent()	of	type	QEvent::WindowStateChange.

See	also	Qt::WindowState	and	windowState().

void	QWidget::setWindowSurface	(	QWindowSurface	*	surface	)
This	function	is	under	development	and	is	subject	to	change.

Sets	the	window	surface	to	be	the	surface	specified.	The	QWidget	takes	will	ownership	of	the	surface.	widget	itself	is	deleted.

This	function	was	introduced	in	Qt	4.2.

See	also	windowSurface().

void	QWidget::setupUi	(	QWidget	*	widget	)
Sets	up	the	user	interface	for	the	specified	widget.

Note:	This	function	is	available	with	widgets	that	derive	from	user	interface	descriptions	created	using	uic.

See	also	Using	a	Designer	UI	File	in	Your	Application.

void	QWidget::show	()	[slot]
Shows	the	widget	and	its	child	widgets.	This	function	is	equivalent	to	setVisible(true).

See	also	raise(),	showEvent(),	hide(),	setVisible(),	showMinimized(),	showMaximized(),	showNormal(),	and	isVisible().

void	QWidget::showEvent	(	QShowEvent	*	event	)	[virtual	protected]
This	event	handler	can	be	reimplemented	in	a	subclass	to	receive	widget	show	events	which	are	passed	in	the	event	parameter.

Non-spontaneous	show	events	are	sent	to	widgets	immediately	before	they	are	shown.	The	spontaneous	show	events	of	windows	are	delivered	afterwards.

Note:	A	widget	receives	spontaneous	show	and	hide	events	when	its	mapping	status	is	changed	by	the	window	system,	e.g.	a	spontaneous	hide	event	when	the	user	minimizes	the	window,	and	a	spontaneous	show	event	when	the	window	is	restored	again.	After	receiving	a	spontaneous	hide	event,	a	widget	is	still	considered	visible	in	the	sense	of	isVisible().

See	also	visible,	event(),	and	QShowEvent.

void	QWidget::showFullScreen	()	[slot]
Shows	the	widget	in	full-screen	mode.

Calling	this	function	only	affects	windows.

To	return	from	full-screen	mode,	call	showNormal().

Full-screen	mode	works	fine	under	Windows,	but	has	certain	problems	under	X.	These	problems	are	due	to	limitations	of	the	ICCCM	protocol	that	specifies	the	communication	between	X11	clients	and	the	window	manager.	ICCCM	simply	does	not	understand	the	concept	of	non-decorated	full-screen	windows.	Therefore,	the	best	we	can	do	is	to	request	a	borderless	window	and	place	and	resize	it	to	fill	the	entire	screen.	Depending	on	the	window	manager,	this	may	or	may	not	work.	The	borderless	window	is	requested	using	MOTIF	hints,	which	are	at	least	partially	supported	by	virtually	all	modern	window	managers.

An	alternative	would	be	to	bypass	the	window	manager	entirely	and	create	a	window	with	the	Qt::X11BypassWindowManagerHint	flag.	This	has	other	severe	problems	though,	like	totally	broken	keyboard	focus	and	very	strange	effects	on	desktop	changes	or	when	the	user	raises	other	windows.

X11	window	managers	that	follow	modern	post-ICCCM	specifications	support	full-screen	mode	properly.

See	also	showNormal(),	showMaximized(),	show(),	hide(),	and	isVisible().

24

qwidget.html#grabShortcut
qwidget.html#releaseShortcut
qaction.html
qshortcut.html
qwidget.html#grabShortcut
qwidget.html#releaseShortcut
qstyle.html
qapplication.html#style
qstyle.html
qwidget.html#style
qstyle.html
qapplication.html#style
qapplication.html#setStyle
qwidget.html#focusPolicy-prop
qwidget.html#setFocusProxy
focus.html
qstring.html
qwidget.html#windowRole
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qwidget.html#visible-prop
qwidget.html#show
qt.html
qt.html
qt.html
qwidget.html#show
qt.html#WindowState-enum
qwidget.html#changeEvent
qevent.html#Type-enum
qt.html#WindowState-enum
qwidget.html#windowState
qwidget.html
qwidget.html#windowSurface
uic.html#uic
designer-using-a-ui-file.html
qwidget.html#raise
qwidget.html#showEvent
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#showMinimized
qwidget.html#showMaximized
qwidget.html#showNormal
qwidget.html#visible-prop
qshowevent.html
qwidget.html#visible-prop
qwidget.html#visible-prop
qwidget.html#event
qshowevent.html
qwidget.html#isWindow
qwidget.html#showNormal
qt.html#WindowType-enum
qwidget.html#showNormal
qwidget.html#showMaximized
qwidget.html#show
qwidget.html#hide
qwidget.html#visible-prop


void	QWidget::showMaximized	()	[slot]
Shows	the	widget	maximized.

Calling	this	function	only	affects	windows.

On	X11,	this	function	may	not	work	properly	with	certain	window	managers.	See	the	Window	Geometry	documentation	for	an	explanation.

See	also	setWindowState(),	showNormal(),	showMinimized(),	show(),	hide(),	and	isVisible().

void	QWidget::showMinimized	()	[slot]
Shows	the	widget	minimized,	as	an	icon.

Calling	this	function	only	affects	windows.

See	also	showNormal(),	showMaximized(),	show(),	hide(),	isVisible(),	and	isMinimized().

void	QWidget::showNormal	()	[slot]
Restores	the	widget	after	it	has	been	maximized	or	minimized.

Calling	this	function	only	affects	windows.

See	also	setWindowState(),	showMinimized(),	showMaximized(),	show(),	hide(),	and	isVisible().

void	QWidget::stackUnder	(	QWidget	*	w	)
Places	the	widget	under	w	in	the	parent	widget's	stack.

To	make	this	work,	the	widget	itself	and	w	must	be	siblings.

See	also	raise()	and	lower().

QStyle	*	QWidget::style	()	const
See	also	QWidget::setStyle(),	QApplication::setStyle(),	and	QApplication::style().

void	QWidget::tabletEvent	(	QTabletEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	tablet	events	for	the	widget.

If	you	reimplement	this	handler,	it	is	very	important	that	you	ignore()	the	event	if	you	do	not	handle	it,	so	that	the	widget's	parent	can	interpret	it.

The	default	implementation	ignores	the	event.

See	also	QTabletEvent::ignore(),	QTabletEvent::accept(),	event(),	and	QTabletEvent.

bool	QWidget::testAttribute	(	Qt::WidgetAttribute	attribute	)	const
Returns	true	if	attribute	attribute	is	set	on	this	widget;	otherwise	returns	false.

See	also	setAttribute().

bool	QWidget::underMouse	()	const
Returns	true	if	the	widget	is	under	the	mouse	cursor;	otherwise	returns	false.

This	value	is	not	updated	properly	during	drag	and	drop	operations.

See	also	enterEvent()	and	leaveEvent().

void	QWidget::ungrabGesture	(	Qt::GestureType	gesture	)
Unsubscribes	the	widget	from	a	given	gesture	type

This	function	was	introduced	in	Qt	4.6.

See	also	grabGesture()	and	QGestureEvent.

void	QWidget::update	()	[slot]
Updates	the	widget	unless	updates	are	disabled	or	the	widget	is	hidden.

This	function	does	not	cause	an	immediate	repaint;	instead	it	schedules	a	paint	event	for	processing	when	Qt	returns	to	the	main	event	loop.	This	permits	Qt	to	optimize	for	more	speed	and	less	flicker	than	a	call	to	repaint()	does.

Calling	update()	several	times	normally	results	in	just	one	paintEvent()	call.

Qt	normally	erases	the	widget's	area	before	the	paintEvent()	call.	If	the	Qt::WA_OpaquePaintEvent	widget	attribute	is	set,	the	widget	is	responsible	for	painting	all	its	pixels	with	an	opaque	color.

See	also	repaint(),	paintEvent(),	setUpdatesEnabled(),	and	Analog	Clock	Example.

void	QWidget::update	(	int	x,	int	y,	int	w,	int	h	)
This	is	an	overloaded	function.

This	version	updates	a	rectangle	(x,	y,	w,	h)	inside	the	widget.

void	QWidget::update	(	const	QRect	&	rect	)
This	is	an	overloaded	function.

This	version	updates	a	rectangle	rect	inside	the	widget.

void	QWidget::update	(	const	QRegion	&	rgn	)
This	is	an	overloaded	function.

This	version	repaints	a	region	rgn	inside	the	widget.

void	QWidget::updateGeometry	()
Notifies	the	layout	system	that	this	widget	has	changed	and	may	need	to	change	geometry.

Call	this	function	if	the	sizeHint()	or	sizePolicy()	have	changed.

25

qwidget.html#isWindow
application-windows.html#window-geometry
qwidget.html#setWindowState
qwidget.html#showNormal
qwidget.html#showMinimized
qwidget.html#show
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#isWindow
qwidget.html#showNormal
qwidget.html#showMaximized
qwidget.html#show
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#minimized-prop
qwidget.html#isWindow
qwidget.html#setWindowState
qwidget.html#showMinimized
qwidget.html#showMaximized
qwidget.html#show
qwidget.html#hide
qwidget.html#visible-prop
qwidget.html#raise
qwidget.html#lower
qstyle.html
qwidget.html#setStyle
qapplication.html#setStyle
qapplication.html#style
qtabletevent.html
qtabletevent.html
qevent.html#ignore
qevent.html#accept
qwidget.html#event
qtabletevent.html
qt.html#WidgetAttribute-enum
qwidget.html#setAttribute
qwidget.html#enterEvent
qwidget.html#leaveEvent
qt.html#GestureType-enum
qwidget.html#grabGesture
qgestureevent.html
qwidget.html#repaint
qwidget.html#paintEvent
qwidget.html#paintEvent
qt.html#WidgetAttribute-enum
qwidget.html#repaint
qwidget.html#paintEvent
qwidget.html#updatesEnabled-prop
widgets-analogclock.html
qrect.html
qregion.html
qwidget.html#sizeHint-prop
qwidget.html#sizePolicy-prop


For	explicitly	hidden	widgets,	updateGeometry()	is	a	no-op.	The	layout	system	will	be	notified	as	soon	as	the	widget	is	shown.

void	QWidget::updateMicroFocus	()	[protected	slot]
Updates	the	widget's	micro	focus.

See	also	QInputContext.

QRegion	QWidget::visibleRegion	()	const
Returns	the	unobscured	region	where	paint	events	can	occur.

For	visible	widgets,	this	is	an	approximation	of	the	area	not	covered	by	other	widgets;	otherwise,	this	is	an	empty	region.

The	repaint()	function	calls	this	function	if	necessary,	so	in	general	you	do	not	need	to	call	it.

void	QWidget::wheelEvent	(	QWheelEvent	*	event	)	[virtual	protected]
This	event	handler,	for	event	event,	can	be	reimplemented	in	a	subclass	to	receive	wheel	events	for	the	widget.

If	you	reimplement	this	handler,	it	is	very	important	that	you	ignore()	the	event	if	you	do	not	handle	it,	so	that	the	widget's	parent	can	interpret	it.

The	default	implementation	ignores	the	event.

See	also	QWheelEvent::ignore(),	QWheelEvent::accept(),	event(),	and	QWheelEvent.

bool	QWidget::winEvent	(	MSG	*	message,	long	*	result	)	[virtual	protected]
This	special	event	handler	can	be	reimplemented	in	a	subclass	to	receive	native	Windows	events	which	are	passed	in	the	message	parameter.

In	your	reimplementation	of	this	function,	if	you	want	to	stop	the	event	being	handled	by	Qt,	return	true	and	set	result	to	the	value	that	the	window	procedure	should	return.	If	you	return	false,	this	native	event	is	passed	back	to	Qt,	which	translates	the	event	into	a	Qt	event	and	sends	it	to	the	widget.

Warning:	This	function	is	not	portable.

See	also	QApplication::winEventFilter().

WId	QWidget::winId	()	const
Returns	the	window	system	identifier	of	the	widget.

Portable	in	principle,	but	if	you	use	it	you	are	probably	about	to	do	something	non-portable.	Be	careful.

If	a	widget	is	non-native	(alien)	and	winId()	is	invoked	on	it,	that	widget	will	be	provided	a	native	handle.

On	Mac	OS	X,	the	type	returned	depends	on	which	framework	Qt	was	linked	against.	If	Qt	is	using	Carbon,	the	{WId}	is	actually	an	HIViewRef.	If	Qt	is	using	Cocoa,	{WId}	is	a	pointer	to	an	NSView.

This	value	may	change	at	run-time.	An	event	with	type	QEvent::WinIdChange	will	be	sent	to	the	widget	following	a	change	in	window	system	identifier.

See	also	find().

QWidget	*	QWidget::window	()	const
Returns	the	window	for	this	widget,	i.e.	the	next	ancestor	widget	that	has	(or	could	have)	a	window-system	frame.

If	the	widget	is	a	window,	the	widget	itself	is	returned.

Typical	usage	is	changing	the	window	title:

	aWidget->window()->setWindowTitle("New	Window	Title");

See	also	isWindow().

QString	QWidget::windowRole	()	const
Returns	the	window's	role,	or	an	empty	string.

See	also	setWindowRole(),	windowIcon,	and	windowTitle.

Qt::WindowStates	QWidget::windowState	()	const
Returns	the	current	window	state.	The	window	state	is	a	OR'ed	combination	of	Qt::WindowState:	Qt::WindowMinimized,	Qt::WindowMaximized,	Qt::WindowFullScreen,	and	Qt::WindowActive.

See	also	Qt::WindowState	and	setWindowState().

QWindowSurface	*	QWidget::windowSurface	()	const
This	function	is	under	development	and	is	subject	to	change.

Returns	the	QWindowSurface	this	widget	will	be	drawn	into.

This	function	was	introduced	in	Qt	4.2.

See	also	setWindowSurface().

Qt::WindowType	QWidget::windowType	()	const
Returns	the	window	type	of	this	widget.	This	is	identical	to	windowFlags()	&	Qt::WindowType_Mask.

See	also	windowFlags.

bool	QWidget::x11Event	(	XEvent	*	event	)	[virtual	protected]
This	special	event	handler	can	be	reimplemented	in	a	subclass	to	receive	native	X11	events	passed	in	the	event	parameter.

In	your	reimplementation	of	this	function,	if	you	want	to	stop	Qt	from	handling	the	event,	return	true.	If	you	return	false,	this	native	event	is	passed	back	to	Qt,	which	translates	it	into	a	Qt	event	and	sends	it	to	the	widget.

Note:	Events	are	only	delivered	to	this	event	handler	if	the	widget	is	native.

Warning:	This	function	is	not	portable.

See	also	QApplication::x11EventFilter()	and	QWidget::winId().

const	QX11Info	&	QWidget::x11Info	()	const
Returns	information	about	the	configuration	of	the	X	display	used	to	display	the	widget.

Warning:	This	function	is	only	available	on	X11.

Qt::HANDLE	QWidget::x11PictureHandle	()	const
26

qinputcontext.html
qregion.html
qwidget.html#repaint
qwheelevent.html
qwheelevent.html
qevent.html#ignore
qevent.html#accept
qwidget.html#event
qwheelevent.html
qcoreapplication.html#winEventFilter
qwidget.html#WId-typedef
qevent.html#Type-enum
qwidget.html#find
qwidget.html#windowTitle-prop
qwidget.html#isWindow
qstring.html
qwidget.html#setWindowRole
qwidget.html#windowIcon-prop
qwidget.html#windowTitle-prop
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qt.html#WindowState-enum
qwidget.html#setWindowState
qwidget.html#setWindowSurface
qt.html#WindowType-enum
qwidget.html#windowFlags-prop
qt.html#WindowType-enum
qwidget.html#windowFlags-prop
qapplication.html#x11EventFilter
qwidget.html#winId
qx11info.html
qt.html#HANDLE-typedef


Returns	the	X11	Picture	handle	of	the	widget	for	XRender	support.	Use	of	this	function	is	not	portable.	This	function	will	return	0	if	XRender	support	is	not	compiled	into	Qt,	if	the	XRender	extension	is	not	supported	on	the	X11	display,	or	if	the	handle	could	not	be	created.

Related	Non-Members

typedef	QWidgetList
Synonym	for	QList<QWidget	*>.

typedef	WId
Platform	dependent	window	identifier.

Macro	Documentation

QWIDGETSIZE_MAX
Defines	the	maximum	size	for	a	QWidget	object.

The	largest	allowed	size	for	a	widget	is	QSize(QWIDGETSIZE_MAX,	QWIDGETSIZE_MAX),	i.e.	QSize	(16777215,16777215).

See	also	QWidget::setMaximumSize().	

©	2015	The	Qt	Company	Ltd.	Documentation	contributions	included	herein	are	the	copyrights	of	their	respective	owners.	

The	documentation	provided	herein	is	licensed	under	the	terms	of	the	GNU	Free	Documentation	License	version	1.3	as	published	by	the	Free	Software	Foundation.	

Documentation	sources	may	be	obtained	from	www.qt-project.org.	

Qt	and	respective	logos	are	trademarks	of	The	Qt	Company	Ltd	in	Finland	and/or	other	countries	worldwide.	All	other	trademarks	are	property	of	their	respective	owners.	Privacy	Policy 

27

qlist.html
qwidget.html
qwidget.html
qsize.html
qsize.html
qwidget.html#maximumSize-prop
http://www.gnu.org/licenses/fdl.html
http://www.qt-project.org
http://en.gitorious.org/privacy_policy/

