

Qt Quick
Scalability in a dynamic world
How to handle multiple
resolutions and form-factors

© 2010 Nokia 1

Nokia Device Portfolio and Software
Evolution

• Nokia’s current and future Device portfolio is streamlining
•  N900: 800 x 480
•  N97/5800/N8: 360 x 640
•  Other: HD-ready

• But also multiplying into new domains via MeeGo.com
•  Tablet, TV, Car

• Wildly varying Software Stacks have been built to accommodate Form
Factors of the Handset device domain

•  Differing implementation, same problem
•  i18n, Operator Customization, DPI, Orientation and Keyboard policy

• Before the touch era, UI’s were simpler to scale
•  Input mandated directional access – causing ‘block’ UI design
•  Comparable to a cell grid (e.g. a HTML table)

• Fluid and Differentiated UI’s represents a new challenge

© 2010 Nokia 2

One Size Fits All

• Scalability assumes that UI’s can be written to work
everywhere

THIS IS NOT POSSIBLE
within reasonable limits

• Because

•  It imposes too much strain on the underlying framework to magically make the
UI work in a broad set of environments

•  It will render the framework unusable to the developer, because it’s impossible
to know how the UI will actually behave

•  It depends on factors that are not controllable by the framework, such as
availability of correctly sized graphic assets (SVG is not an option in all cases)

•  It eventually leads to bad compromises (such as pixelated, stretched images,
clipped text, illegible graphics)

© 2010 Nokia 3

Many sizes fit most

• What’s the alternative? Rewrite everything?

• Different device domains require different UI paradigms
•  Viewing distance
• Navigation model
•  Interaction model

• However, UI elements can to some extent be reused

© 2010 Nokia 4

Pros Cons
Reuse Write once

Easier to maintain
More complex QA
Sub-optimal results

Rewrite Full flexibility to handle
different use cases

More code to create, maintain and
debug

Reuse and Rewrite!

• Application architecture allows reuse of common UI elements and
refactoring of domain-specific paradigms

• Write reusable code to access data and handle App logic
•  This gives consistency and makes QA easier
•  This is aligned with QML’s world view where Presentation / View and Business

logic are separate, and business critical code resides in C++
• Write UI elements that can be reused

•  “Can I see others using my element?” rewrite!
•  Build property API’s that expose an intuitive interface
•  QML is great for encapsulating new types and elements
•  Make sure UI elements correctly use anchors and property bindings, hardcoding

pixel values inside dynamic UI elements is evil
• Rewrite the top-level layer of your UI

•  E.g. the main layout of the UI (think your main.qml)
•  The navigation paradigm

© 2010 Nokia 5

Specific challenges and solutions

• Multiple resolutions
• Use QtMobility (or natively exposed from C++/QPaintDevice) DPI info to

determine which graphic assets to load and which .qml top-level files to use.
•  You have to have graphic assets pre-rendered for different DPI’s /

Resolutions.
•  SVG is not an option, because they do not render to pixel perfect versions,

and SVG is too slow
• Changing graphics based on language

• Use QML’s built-in i18n features to switch Image source path’s depending on
language; source: qsTr(“image_base.png”)

• Adapting to orientation changes
• Use Qt Quick component’s Window abstraction to bind your UI states to the

UI orientation. This translates in practice to either a state per orientation, or
anoter version of your QML file(s) per orientation – depending on App
complexity

© 2010 Nokia 6

Scalability Choices

• Monolithic Scalability Frameworks of yore chains users and platform
•  Automagically modify geometry, breaking intended design
•  Remove effort (and control) from the user to target many UXs

• QML enables scalability via anchors and bindings,
allowing today;

•  Best-effort scalability by App developer
•  Choose minimal complexity that works,

between orientation and sizes
•  Simple scalability at the cost of increased

complexity of UI code
•  Pixel perfect design for a single resolution

•  Designed for specific resolution and Form Factor
•  Full freedom within bounds, at the cost of porting effort

• QML aims to improve scalability experience iteratively

•  How to change graphic asset depending on language?

•  How to get UI controls in QML without QWidget’s?
•  Write own UI controls based on QML elements
•  In the future, Qt Quick components will provide QML widgets

•  How should I handle different navigation paradigms?
•  Qt and QML will never support an arbitrary number of App paradigms
•  Write a top/-level entry-point for you Application for each target domain

•  How to tackle graphic asset loading for multiple resolutions
•  No QML solution yet, but can be achieved from C++ by e.g. setting the path where resources

are loaded from
•  How to determine top-level QML layout loading in multiple resolutions

•  Need to customize QML code for each resolution / family
•  Potentially, this can be set at qmake install time – picking the correct QML file

•  How to handle differing DPI / area in touchable areas

How to create UIs in Qt SDK 1.1
For different resolutions and positioning of QML over QWidgets for Mobile

© 2010 Nokia 8

Image {  
 source: qsTr(“flag.png”)  
}	

viewer.rootContext()->setContextProperty("mm",viewer.physicalDpiX()/25.4);	

Image { width: 40*mm; height: 15*mm }	

Features in QML

Current QML Features
•  Anchor layouts

•  Can represent more advanced layouts
than traditional tabular layouts, while
remaining flexible

•  Property bindings
•  Any Item property can “bind” to another items’ property or expression thereof

•  Translation support
•  E.g. to load different Image source path’s depending on current Language

•  Orientation change
•  QMLviewer has code to listen to orientation changes, this can be repurposed. Near-term Qt Quick

components will provide a window abstraction with Orientation, and long-term Qt Mobility will
provide orientation bindings for QML

Planned QML Features
•  DPI binding in Qt Mobility 1.2
•  UI Orientation binding in Qt Mobility 1.2
•  RTL layout support in QtQuick 1.1

© 2010 Nokia 9

Case-study; Drilldown

•  http://chaos.troll.no/~hhartz/Scalability.zip
•  Problem; Create a navigation model for an email viewer that works across multiple

form-factors
•  Mailbox Folders
•  Messages
•  The Message

•  Invariants
•  Application logic
•  Data model
•  Low-level UI elements

•  Variables
•  Resolution; n900, 5800, N8
•  Physical DPI
•  Orientation; Portrait / Landscape
•  Application State; Folders and Accounts, Message list, Message View
Ø 3 state dimensions

© 2010 Nokia 10

Single-source approach

• Limiting in variability across form-factors
•  E.g. using a ‘strip’ that’s panned depending on App state
• Only the simplest of navigation models can be expressed

• Source code becomes difficult to maintain
•  Change for one Form Factor impacts others
• Merging variants causes exponential complexity
•  State dimensions multiply

(resolutions * orientation * app state)
• Behavior of individual UI elements depend on these
•  Code becomes ugly and difficult to maintain

• These were found during a simple use-case investigation
•  Problems will multiply beyond reason for a production-level App

© 2010 Nokia 11

Multiple-source approach

• So, what if you want the UX on your embedded target?
• Use a new ‘entry-point’ for each platform variant

•  Control which QML entry-point to load from C++

• Reuse UI components, business logic, data, states
• Differentiate in how UI is laid out and behaves
• Reduce impact of adapting to new

form-factors
•  Prevent need to refactor existing code
•  Prevent unintentional UX bugs

© 2010 Nokia 12

Summary

• For very simple use-cases and UX’es, a scalable UI is possible to achieve
• At the expense of code readability and development cost
• With limitations to layout capabilities

• For more complex Apps individual UI’s should be written
•  This might mean mainly a new ‘top level’
• Most of UI elements can and should be reused
• Business logic and data is the same
•  Enable greater degrees of freedom in User Experience differentiation

© 2010 Nokia 13

The End

© 2010 Nokia 14

