Codeless.
Create more.
Deploy everywher

~ :
Uiy
T re st
v
Pt |
7 et v
- N Tew g
i) N Temt
‘ s o Tew
i
1Y Mcese Fayen
n<
o Flickr - Uploads from everyone
- N XpresuMunk >

Scalability in a dynamic world

How to handle multiple
resolutions and form-factors

1 © 2010 Nokia NDKIA



) { Nokia Device Portfolio and Software
- Evolution

Nokia’s current and future Device portfolio is streamlining
N900: 800 x 480
N97/5800/N8: 360 x 640
Other: HD-ready

But also multiplying into new domains via MeeGo.com
Tablet, TV, Car

Wildly varying Software Stacks have been built to accommodate Form
Factors of the Handset device domain

Differing implementation, same problem
i18n, Operator Customization, DPI, Orientation and Keyboard policy

Before the touch era, UI's were simpler to scale
Input mandated directional access - causing ‘block’ UI design
Comparable to a cell grid (e.g. a HTML table)

Fluid and Differentiated UI's represents a new challenge

NOKIA

2 © 2010 Nokia



[Q{ One Size Fits All

 Scalability assumes that UI's can be written to work
everywhere

THIS IS NOT POSSIBLE

within reasonable limits

* Because

» Itimposes too much strain on the underlying framework to magically make the
UI work in a broad set of environments

o It will render the framework unusable to the developer, because it's impossible
to know how the UI will actually behave

» It depends on factors that are not controllable by the framework, such as
availability of correctly sized graphic assets (SVG is not an option in all cases)

» It eventually leads to bad compromises (such as pixelated, stretched images,
clipped text, illegible graphics)

NOKIA

3 © 2010 Nokia



4

Q { Many sizes fit most

What's the alternative? Rewrite everything?

. pos . JOns
Write once More complex QA
Easier to maintain Sub-optimal results

Full flexibility to handle More code to create, maintain and
different use cases debug

Different device domains require different UI paradigms
Viewing distance
Navigation model
Interaction model

However, UI elements can to some extent be reused

NOKIA

© 2010 Nokia



[Q { Reuse and Rewrite!

Application architecture allows reuse of common UI elements and
refactoring of domain-specific paradigms

Write reusable code to access data and handle App logic
This gives consistency and makes QA easier

This is aligned with QML's world view where Presentation / View and Business
logic are separate, and business critical code resides in C++

Write UI elements that can be reused
“Can I see others using my element?” rewrite!
Build property API’s that expose an intuitive interface
QML is great for encapsulating new types and elements

Make sure UI elements correctly use anchors and property bindings, hardcoding
pixel values inside dynamic UI elements is evil

Rewrite the top-level layer of your Ul

E.g. the main layout of the UI (think your main.gml)
The navigation paradigm

5 © 2010 Nokia NDKIA



) { Specific challenges and solutions

Multiple resolutions

Use QtMobility (or natively exposed from C++/QPaintDevice) DPI info to
determine which graphic assets to load and which .qml top-level files to use.
You have to have graphic assets pre-rendered for different DPI's /
Resolutions.

SVG is not an option, because they do not render to pixel perfect versions,
and SVG is too slow

Changing graphics based on language

Use QML's built-in i18n features to switch Image source path’s depending on
language; source: gsTr(“image_base.png”)

Adapting to orientation changes

Use Qt Quick component’s Window abstraction to bind your UI states to the
UI orientation. This translates in practice to either a state per orientation, or
anoter version of your QML file(s) per orientation - depending on App
complexity

NOKIA

6 © 2010 Nokia



[Q { Scalability Choices

Monolithic Scalability Frameworks of yore chains users and platform
Automagically modify geometry, breaking intended design
Remove effort (and control) from the user to target many UXs

QML enables scalability via anchors and bindings,
allowing today; )
Best-effort scalability by App developer e

Choose minimal complexity that works,
between orientation and sizes

Simple scalability at the cost of increased
complexity of UI code

Pixel perfect design for a single resolution
Designed for specific resolution and Form Factor
Full freedom within bounds, at the cost of porting effort

QML aims to improve scalability experience iteratively

NOKIA



For different resolutions and positioning of QML over QWidgets for Mobile

[Q { How to create Uls in Qt SDK 1.1

How to change graphic asset depending on language?

Image {
source: qsTr(“flag.png”)
}

How to get UI controls in QML without QWidget's?
Write own UI controls based on QML elements
In the future, Qt Quick components will provide QML widgets
How should I handle different navigation paradigms?
Qt and QML will never support an arbitrary number of App paradigms
Write a top/-level entry-point for you Application for each target domain
How to tackle graphic asset loading for multiple resolutions

No QML solution yet, but can be achieved from C++ by e.qg. setting the path where resources
are loaded from

How to determine top-level QML layout loading in multiple resolutions
Need to customize QML code for each resolution / family
Potentially, this can be set at gmake install time - picking the correct QML file
How to handle differing DPI / area in touchable areas

viewer.rootContext()->setContextProperty("mm",viewer.physicalDpiX()/25.4);

Image { width: 4@0*mm; height: 15*mm }

NOKIA

8 © 2010 Nokia



[( I Featuresin QML ¢

= bottom

urrent QML Feature o topMargin
* Anchor layouts ."

» (Can represent more advanced layouts cvohe.i, DOtOMMargin
than traditional tabular layouts, while leftMargin rightMargin
remaining flexible

* Property bindings

* Any Item property can “bind” to another items’ property or expression thereof
* Translation support

» E.g.to load different Image source path’s depending on current Language
* Orientation change

* QMLviewer has code to listen to orientation changes, this can be repurposed. Near-term Qt Quick
components will provide a window abstraction with Orientation, and long-term Qt Mobility will
provide orientation bindings for QML

Planned QML Features

* DPI binding in Qt Mobility 1.2

» UI Orientation binding in Qt Mobility 1.2
* RTL layout supportin QtQuick 1.1

9 © 2010 Nokia NDKIA



[Q{ Case-study; Drilldown

e http://chaos.troll.no/~hhartz/Scalability.zip

* Problem; Create a navigation model for an email viewer that works across multiple
form-factors

* Mailbox Folders
* Messages
* The Message

* Invariants
* Application logic
» Data model
* Low-level UI elements

» Variables
* Resolution; n900, 5800, N8
* Physical DPI
* Orientation; Portrait / Landscape
» Application State; Folders and Accounts, Message list, Message View
» 3 state dimensions

[Qt-gmI] Removal of
QML effects

Fold
Fold
Fol

Fol

Fold
Fold
fold
Fold

der
der
der
er
e
e
e
er
er
e
er
der
Folder

LAAR AR A RN NN RN

NOKIA

10 © 2010 Nokia



) { Single-source approach

Limiting in variability across form-factors
E.g. using a ‘strip’ that's panned depending on App state
Only the simplest of navigation models can be expressed

Source code becomes difficult to maintain
Change for one Form Factor impacts others

Merging variants causes exponential complexity
State dimensions multiply

(resolutions * orientation * app state)
Behavior of individual UI elements depend on these
Code becomes ugly and difficult to maintain

These were found during a simple use-case investigation
Problems will multiply beyond reason for a production-level App

NOKIA

11 © 2010 Nokia



Q { Multiple-source approach

So, what if you want the UX on your embedded target?

Use a new ‘entry-point’ for each platform variant
Control which QML entry-point to load from C++

Reuse UI components, business logic, data, states

Differentiate in how Ul is laid out and behaves

Reduce impact of adapting to new
form-factors

Prevent need to refactor existing code
Prevent unintentional UX bugs

[Qt-gml] Removal of QML effects
henriiChartz at nokla.com hennk hartz at nok.a.cor

NOKIA

12 © 2010 Nokia



) { Summary

For very simple use-cases and UX'es, a scalable Ul is possible to achieve
At the expense of code readability and development cost
With limitations to layout capabilities

For more complex Apps individual UI's should be written
This might mean mainly a new ‘top level’
Most of UI elements can and should be reused
Business logic and data is the same
Enable greater degrees of freedom in User Experience differentiation

13 © 2010 Nokia NDKIA



The End

NOKIA

14 © 2010 Nokia



